Solve for x
x>-\frac{1}{2}
Graph
Share
Copied to clipboard
1-x<\frac{1}{2}\times 3
Multiply both sides by 3. Since 3 is positive, the inequality direction remains the same.
1-x<\frac{3}{2}
Multiply \frac{1}{2} and 3 to get \frac{3}{2}.
-x<\frac{3}{2}-1
Subtract 1 from both sides.
-x<\frac{3}{2}-\frac{2}{2}
Convert 1 to fraction \frac{2}{2}.
-x<\frac{3-2}{2}
Since \frac{3}{2} and \frac{2}{2} have the same denominator, subtract them by subtracting their numerators.
-x<\frac{1}{2}
Subtract 2 from 3 to get 1.
x>\frac{\frac{1}{2}}{-1}
Divide both sides by -1. Since -1 is negative, the inequality direction is changed.
x>\frac{1}{2\left(-1\right)}
Express \frac{\frac{1}{2}}{-1} as a single fraction.
x>\frac{1}{-2}
Multiply 2 and -1 to get -2.
x>-\frac{1}{2}
Fraction \frac{1}{-2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}