Evaluate
-\frac{18}{95}\approx -0.189473684
Factor
-\frac{18}{95} = -0.18947368421052632
Share
Copied to clipboard
\frac{\frac{5}{5}-\frac{8}{5}}{2+\frac{7}{6}}
Convert 1 to fraction \frac{5}{5}.
\frac{\frac{5-8}{5}}{2+\frac{7}{6}}
Since \frac{5}{5} and \frac{8}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{3}{5}}{2+\frac{7}{6}}
Subtract 8 from 5 to get -3.
\frac{-\frac{3}{5}}{\frac{12}{6}+\frac{7}{6}}
Convert 2 to fraction \frac{12}{6}.
\frac{-\frac{3}{5}}{\frac{12+7}{6}}
Since \frac{12}{6} and \frac{7}{6} have the same denominator, add them by adding their numerators.
\frac{-\frac{3}{5}}{\frac{19}{6}}
Add 12 and 7 to get 19.
-\frac{3}{5}\times \frac{6}{19}
Divide -\frac{3}{5} by \frac{19}{6} by multiplying -\frac{3}{5} by the reciprocal of \frac{19}{6}.
\frac{-3\times 6}{5\times 19}
Multiply -\frac{3}{5} times \frac{6}{19} by multiplying numerator times numerator and denominator times denominator.
\frac{-18}{95}
Do the multiplications in the fraction \frac{-3\times 6}{5\times 19}.
-\frac{18}{95}
Fraction \frac{-18}{95} can be rewritten as -\frac{18}{95} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}