Solve for x
x=3
Graph
Share
Copied to clipboard
1-\frac{6-x}{3}+2x-\left(\frac{x}{2}-\frac{3+x}{4}\right)=6
Multiply both sides of the equation by 2.
1-\frac{6-x}{3}+2x-\left(\frac{2x}{4}-\frac{3+x}{4}\right)=6
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 4 is 4. Multiply \frac{x}{2} times \frac{2}{2}.
1-\frac{6-x}{3}+2x-\frac{2x-\left(3+x\right)}{4}=6
Since \frac{2x}{4} and \frac{3+x}{4} have the same denominator, subtract them by subtracting their numerators.
1-\frac{6-x}{3}+2x-\frac{2x-3-x}{4}=6
Do the multiplications in 2x-\left(3+x\right).
1-\frac{6-x}{3}+2x-\frac{x-3}{4}=6
Combine like terms in 2x-3-x.
1-\frac{4\left(6-x\right)}{12}+2x-\frac{3\left(x-3\right)}{12}=6
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 4 is 12. Multiply \frac{6-x}{3} times \frac{4}{4}. Multiply \frac{x-3}{4} times \frac{3}{3}.
1+\frac{-4\left(6-x\right)-3\left(x-3\right)}{12}+2x=6
Since -\frac{4\left(6-x\right)}{12} and \frac{3\left(x-3\right)}{12} have the same denominator, subtract them by subtracting their numerators.
1+\frac{-24+4x-3x+9}{12}+2x=6
Do the multiplications in -4\left(6-x\right)-3\left(x-3\right).
1+\frac{-15+x}{12}+2x=6
Combine like terms in -24+4x-3x+9.
1-\frac{5}{4}+\frac{1}{12}x+2x=6
Divide each term of -15+x by 12 to get -\frac{5}{4}+\frac{1}{12}x.
\frac{4}{4}-\frac{5}{4}+\frac{1}{12}x+2x=6
Convert 1 to fraction \frac{4}{4}.
\frac{4-5}{4}+\frac{1}{12}x+2x=6
Since \frac{4}{4} and \frac{5}{4} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{4}+\frac{1}{12}x+2x=6
Subtract 5 from 4 to get -1.
-\frac{1}{4}+\frac{25}{12}x=6
Combine \frac{1}{12}x and 2x to get \frac{25}{12}x.
\frac{25}{12}x=6+\frac{1}{4}
Add \frac{1}{4} to both sides.
\frac{25}{12}x=\frac{24}{4}+\frac{1}{4}
Convert 6 to fraction \frac{24}{4}.
\frac{25}{12}x=\frac{24+1}{4}
Since \frac{24}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
\frac{25}{12}x=\frac{25}{4}
Add 24 and 1 to get 25.
x=\frac{25}{4}\times \frac{12}{25}
Multiply both sides by \frac{12}{25}, the reciprocal of \frac{25}{12}.
x=\frac{25\times 12}{4\times 25}
Multiply \frac{25}{4} times \frac{12}{25} by multiplying numerator times numerator and denominator times denominator.
x=\frac{12}{4}
Cancel out 25 in both numerator and denominator.
x=3
Divide 12 by 4 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}