Evaluate
\frac{20}{21}\approx 0.952380952
Factor
\frac{2 ^ {2} \cdot 5}{3 \cdot 7} = 0.9523809523809523
Share
Copied to clipboard
\frac{\frac{2}{2}-\frac{1}{2}}{\frac{3}{4}}+\frac{\frac{3}{2}-1}{2-\frac{1}{4}}
Convert 1 to fraction \frac{2}{2}.
\frac{\frac{2-1}{2}}{\frac{3}{4}}+\frac{\frac{3}{2}-1}{2-\frac{1}{4}}
Since \frac{2}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{2}}{\frac{3}{4}}+\frac{\frac{3}{2}-1}{2-\frac{1}{4}}
Subtract 1 from 2 to get 1.
\frac{1}{2}\times \frac{4}{3}+\frac{\frac{3}{2}-1}{2-\frac{1}{4}}
Divide \frac{1}{2} by \frac{3}{4} by multiplying \frac{1}{2} by the reciprocal of \frac{3}{4}.
\frac{1\times 4}{2\times 3}+\frac{\frac{3}{2}-1}{2-\frac{1}{4}}
Multiply \frac{1}{2} times \frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{4}{6}+\frac{\frac{3}{2}-1}{2-\frac{1}{4}}
Do the multiplications in the fraction \frac{1\times 4}{2\times 3}.
\frac{2}{3}+\frac{\frac{3}{2}-1}{2-\frac{1}{4}}
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
\frac{2}{3}+\frac{\frac{3}{2}-\frac{2}{2}}{2-\frac{1}{4}}
Convert 1 to fraction \frac{2}{2}.
\frac{2}{3}+\frac{\frac{3-2}{2}}{2-\frac{1}{4}}
Since \frac{3}{2} and \frac{2}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{3}+\frac{\frac{1}{2}}{2-\frac{1}{4}}
Subtract 2 from 3 to get 1.
\frac{2}{3}+\frac{\frac{1}{2}}{\frac{8}{4}-\frac{1}{4}}
Convert 2 to fraction \frac{8}{4}.
\frac{2}{3}+\frac{\frac{1}{2}}{\frac{8-1}{4}}
Since \frac{8}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{3}+\frac{\frac{1}{2}}{\frac{7}{4}}
Subtract 1 from 8 to get 7.
\frac{2}{3}+\frac{1}{2}\times \frac{4}{7}
Divide \frac{1}{2} by \frac{7}{4} by multiplying \frac{1}{2} by the reciprocal of \frac{7}{4}.
\frac{2}{3}+\frac{1\times 4}{2\times 7}
Multiply \frac{1}{2} times \frac{4}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{3}+\frac{4}{14}
Do the multiplications in the fraction \frac{1\times 4}{2\times 7}.
\frac{2}{3}+\frac{2}{7}
Reduce the fraction \frac{4}{14} to lowest terms by extracting and canceling out 2.
\frac{14}{21}+\frac{6}{21}
Least common multiple of 3 and 7 is 21. Convert \frac{2}{3} and \frac{2}{7} to fractions with denominator 21.
\frac{14+6}{21}
Since \frac{14}{21} and \frac{6}{21} have the same denominator, add them by adding their numerators.
\frac{20}{21}
Add 14 and 6 to get 20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}