Solve for x
x = \frac{14}{5} = 2\frac{4}{5} = 2.8
Graph
Share
Copied to clipboard
\left(3x-1\right)\left(1+2x\right)-\left(-1-3x\right)\left(1-2x\right)=-\left(3x-14\right)
Variable x cannot be equal to any of the values -\frac{1}{3},\frac{1}{3} since division by zero is not defined. Multiply both sides of the equation by \left(3x-1\right)\left(3x+1\right), the least common multiple of 1+3x,1-3x,1-9x^{2}.
x+6x^{2}-1-\left(-1-3x\right)\left(1-2x\right)=-\left(3x-14\right)
Use the distributive property to multiply 3x-1 by 1+2x and combine like terms.
x+6x^{2}-1-\left(-1-x+6x^{2}\right)=-\left(3x-14\right)
Use the distributive property to multiply -1-3x by 1-2x and combine like terms.
x+6x^{2}-1+1+x-6x^{2}=-\left(3x-14\right)
To find the opposite of -1-x+6x^{2}, find the opposite of each term.
x+6x^{2}+x-6x^{2}=-\left(3x-14\right)
Add -1 and 1 to get 0.
2x+6x^{2}-6x^{2}=-\left(3x-14\right)
Combine x and x to get 2x.
2x=-\left(3x-14\right)
Combine 6x^{2} and -6x^{2} to get 0.
2x=-3x+14
To find the opposite of 3x-14, find the opposite of each term.
2x+3x=14
Add 3x to both sides.
5x=14
Combine 2x and 3x to get 5x.
x=\frac{14}{5}
Divide both sides by 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}