Solve for m
m = \frac{14}{5} = 2\frac{4}{5} = 2.8
Share
Copied to clipboard
\left(3m-1\right)\left(1+2m\right)-\left(-1-3m\right)\left(1-2m\right)=-\left(3m-14\right)
Variable m cannot be equal to any of the values -\frac{1}{3},\frac{1}{3} since division by zero is not defined. Multiply both sides of the equation by \left(3m-1\right)\left(3m+1\right), the least common multiple of 1+3m,1-3m,1-9m^{2}.
m+6m^{2}-1-\left(-1-3m\right)\left(1-2m\right)=-\left(3m-14\right)
Use the distributive property to multiply 3m-1 by 1+2m and combine like terms.
m+6m^{2}-1-\left(-1-m+6m^{2}\right)=-\left(3m-14\right)
Use the distributive property to multiply -1-3m by 1-2m and combine like terms.
m+6m^{2}-1+1+m-6m^{2}=-\left(3m-14\right)
To find the opposite of -1-m+6m^{2}, find the opposite of each term.
m+6m^{2}+m-6m^{2}=-\left(3m-14\right)
Add -1 and 1 to get 0.
2m+6m^{2}-6m^{2}=-\left(3m-14\right)
Combine m and m to get 2m.
2m=-\left(3m-14\right)
Combine 6m^{2} and -6m^{2} to get 0.
2m=-3m+14
To find the opposite of 3m-14, find the opposite of each term.
2m+3m=14
Add 3m to both sides.
5m=14
Combine 2m and 3m to get 5m.
m=\frac{14}{5}
Divide both sides by 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}