Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1+\sqrt{3}\right)\left(1+\sqrt{3}\right)}{\left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right)}
Rationalize the denominator of \frac{1+\sqrt{3}}{1-\sqrt{3}} by multiplying numerator and denominator by 1+\sqrt{3}.
\frac{\left(1+\sqrt{3}\right)\left(1+\sqrt{3}\right)}{1^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+\sqrt{3}\right)\left(1+\sqrt{3}\right)}{1-3}
Square 1. Square \sqrt{3}.
\frac{\left(1+\sqrt{3}\right)\left(1+\sqrt{3}\right)}{-2}
Subtract 3 from 1 to get -2.
\frac{\left(1+\sqrt{3}\right)^{2}}{-2}
Multiply 1+\sqrt{3} and 1+\sqrt{3} to get \left(1+\sqrt{3}\right)^{2}.
\frac{1+2\sqrt{3}+\left(\sqrt{3}\right)^{2}}{-2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{3}\right)^{2}.
\frac{1+2\sqrt{3}+3}{-2}
The square of \sqrt{3} is 3.
\frac{4+2\sqrt{3}}{-2}
Add 1 and 3 to get 4.
-2-\sqrt{3}
Divide each term of 4+2\sqrt{3} by -2 to get -2-\sqrt{3}.