Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1+\sqrt{15}\right)\left(1+\sqrt{15}\right)}{\left(1-\sqrt{15}\right)\left(1+\sqrt{15}\right)}
Rationalize the denominator of \frac{1+\sqrt{15}}{1-\sqrt{15}} by multiplying numerator and denominator by 1+\sqrt{15}.
\frac{\left(1+\sqrt{15}\right)\left(1+\sqrt{15}\right)}{1^{2}-\left(\sqrt{15}\right)^{2}}
Consider \left(1-\sqrt{15}\right)\left(1+\sqrt{15}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+\sqrt{15}\right)\left(1+\sqrt{15}\right)}{1-15}
Square 1. Square \sqrt{15}.
\frac{\left(1+\sqrt{15}\right)\left(1+\sqrt{15}\right)}{-14}
Subtract 15 from 1 to get -14.
\frac{\left(1+\sqrt{15}\right)^{2}}{-14}
Multiply 1+\sqrt{15} and 1+\sqrt{15} to get \left(1+\sqrt{15}\right)^{2}.
\frac{1+2\sqrt{15}+\left(\sqrt{15}\right)^{2}}{-14}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{15}\right)^{2}.
\frac{1+2\sqrt{15}+15}{-14}
The square of \sqrt{15} is 15.
\frac{16+2\sqrt{15}}{-14}
Add 1 and 15 to get 16.