Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{3}{3}+\frac{\sqrt{3}}{3}}{1-1\times \frac{\sqrt{3}}{3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{3}{3}.
\frac{\frac{3+\sqrt{3}}{3}}{1-1\times \frac{\sqrt{3}}{3}}
Since \frac{3}{3} and \frac{\sqrt{3}}{3} have the same denominator, add them by adding their numerators.
\frac{\frac{3+\sqrt{3}}{3}}{1-\frac{\sqrt{3}}{3}}
Express 1\times \frac{\sqrt{3}}{3} as a single fraction.
\frac{\frac{3+\sqrt{3}}{3}}{\frac{3}{3}-\frac{\sqrt{3}}{3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{3}{3}.
\frac{\frac{3+\sqrt{3}}{3}}{\frac{3-\sqrt{3}}{3}}
Since \frac{3}{3} and \frac{\sqrt{3}}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(3+\sqrt{3}\right)\times 3}{3\left(3-\sqrt{3}\right)}
Divide \frac{3+\sqrt{3}}{3} by \frac{3-\sqrt{3}}{3} by multiplying \frac{3+\sqrt{3}}{3} by the reciprocal of \frac{3-\sqrt{3}}{3}.
\frac{\sqrt{3}+3}{-\sqrt{3}+3}
Cancel out 3 in both numerator and denominator.
\frac{\left(\sqrt{3}+3\right)\left(-\sqrt{3}-3\right)}{\left(-\sqrt{3}+3\right)\left(-\sqrt{3}-3\right)}
Rationalize the denominator of \frac{\sqrt{3}+3}{-\sqrt{3}+3} by multiplying numerator and denominator by -\sqrt{3}-3.
\frac{\left(\sqrt{3}+3\right)\left(-\sqrt{3}-3\right)}{\left(-\sqrt{3}\right)^{2}-3^{2}}
Consider \left(-\sqrt{3}+3\right)\left(-\sqrt{3}-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}+3\right)\left(-\sqrt{3}-3\right)}{\left(-1\right)^{2}\left(\sqrt{3}\right)^{2}-3^{2}}
Expand \left(-\sqrt{3}\right)^{2}.
\frac{\left(\sqrt{3}+3\right)\left(-\sqrt{3}-3\right)}{1\left(\sqrt{3}\right)^{2}-3^{2}}
Calculate -1 to the power of 2 and get 1.
\frac{\left(\sqrt{3}+3\right)\left(-\sqrt{3}-3\right)}{1\times 3-3^{2}}
The square of \sqrt{3} is 3.
\frac{\left(\sqrt{3}+3\right)\left(-\sqrt{3}-3\right)}{3-3^{2}}
Multiply 1 and 3 to get 3.
\frac{\left(\sqrt{3}+3\right)\left(-\sqrt{3}-3\right)}{3-9}
Calculate 3 to the power of 2 and get 9.
\frac{\left(\sqrt{3}+3\right)\left(-\sqrt{3}-3\right)}{-6}
Subtract 9 from 3 to get -6.
\frac{-\left(\sqrt{3}\right)^{2}-3\sqrt{3}-3\sqrt{3}-9}{-6}
Apply the distributive property by multiplying each term of \sqrt{3}+3 by each term of -\sqrt{3}-3.
\frac{-3-3\sqrt{3}-3\sqrt{3}-9}{-6}
The square of \sqrt{3} is 3.
\frac{-3-6\sqrt{3}-9}{-6}
Combine -3\sqrt{3} and -3\sqrt{3} to get -6\sqrt{3}.
\frac{-12-6\sqrt{3}}{-6}
Subtract 9 from -3 to get -12.
2+\sqrt{3}
Divide each term of -12-6\sqrt{3} by -6 to get 2+\sqrt{3}.