Evaluate
\frac{4165}{3399}\approx 1.2253604
Factor
\frac{5 \cdot 17 \cdot 7 ^ {2}}{3 \cdot 11 \cdot 103} = 1\frac{766}{3399} = 1.2253604001176817
Share
Copied to clipboard
\frac{1\times 3+2}{3\times 5.5}+\frac{\frac{1\times 12+7}{12}}{2.25-\frac{8}{15}}
Express \frac{\frac{1\times 3+2}{3}}{5.5} as a single fraction.
\frac{3+2}{3\times 5.5}+\frac{\frac{1\times 12+7}{12}}{2.25-\frac{8}{15}}
Multiply 1 and 3 to get 3.
\frac{5}{3\times 5.5}+\frac{\frac{1\times 12+7}{12}}{2.25-\frac{8}{15}}
Add 3 and 2 to get 5.
\frac{5}{16.5}+\frac{\frac{1\times 12+7}{12}}{2.25-\frac{8}{15}}
Multiply 3 and 5.5 to get 16.5.
\frac{50}{165}+\frac{\frac{1\times 12+7}{12}}{2.25-\frac{8}{15}}
Expand \frac{5}{16.5} by multiplying both numerator and the denominator by 10.
\frac{10}{33}+\frac{\frac{1\times 12+7}{12}}{2.25-\frac{8}{15}}
Reduce the fraction \frac{50}{165} to lowest terms by extracting and canceling out 5.
\frac{10}{33}+\frac{\frac{12+7}{12}}{2.25-\frac{8}{15}}
Multiply 1 and 12 to get 12.
\frac{10}{33}+\frac{\frac{19}{12}}{2.25-\frac{8}{15}}
Add 12 and 7 to get 19.
\frac{10}{33}+\frac{\frac{19}{12}}{\frac{9}{4}-\frac{8}{15}}
Convert decimal number 2.25 to fraction \frac{225}{100}. Reduce the fraction \frac{225}{100} to lowest terms by extracting and canceling out 25.
\frac{10}{33}+\frac{\frac{19}{12}}{\frac{135}{60}-\frac{32}{60}}
Least common multiple of 4 and 15 is 60. Convert \frac{9}{4} and \frac{8}{15} to fractions with denominator 60.
\frac{10}{33}+\frac{\frac{19}{12}}{\frac{135-32}{60}}
Since \frac{135}{60} and \frac{32}{60} have the same denominator, subtract them by subtracting their numerators.
\frac{10}{33}+\frac{\frac{19}{12}}{\frac{103}{60}}
Subtract 32 from 135 to get 103.
\frac{10}{33}+\frac{19}{12}\times \frac{60}{103}
Divide \frac{19}{12} by \frac{103}{60} by multiplying \frac{19}{12} by the reciprocal of \frac{103}{60}.
\frac{10}{33}+\frac{19\times 60}{12\times 103}
Multiply \frac{19}{12} times \frac{60}{103} by multiplying numerator times numerator and denominator times denominator.
\frac{10}{33}+\frac{1140}{1236}
Do the multiplications in the fraction \frac{19\times 60}{12\times 103}.
\frac{10}{33}+\frac{95}{103}
Reduce the fraction \frac{1140}{1236} to lowest terms by extracting and canceling out 12.
\frac{1030}{3399}+\frac{3135}{3399}
Least common multiple of 33 and 103 is 3399. Convert \frac{10}{33} and \frac{95}{103} to fractions with denominator 3399.
\frac{1030+3135}{3399}
Since \frac{1030}{3399} and \frac{3135}{3399} have the same denominator, add them by adding their numerators.
\frac{4165}{3399}
Add 1030 and 3135 to get 4165.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}