Solve for x
x=\frac{31}{131}\approx 0.236641221
Graph
Share
Copied to clipboard
2\times \frac{1\times 8-8x}{1.2}-\left(1\times 3-3x\right)=2\times \frac{5x-0\times 4}{0.3}
Multiply both sides of the equation by 2.
2\times \frac{8-8x}{1.2}-\left(1\times 3-3x\right)=2\times \frac{5x-0\times 4}{0.3}
Multiply 1 and 8 to get 8.
2\times \frac{8-8x}{1.2}-\left(3-3x\right)=2\times \frac{5x-0\times 4}{0.3}
Multiply 1 and 3 to get 3.
2\times \frac{8-8x}{1.2}-3-\left(-3x\right)=2\times \frac{5x-0\times 4}{0.3}
To find the opposite of 3-3x, find the opposite of each term.
2\times \frac{8-8x}{1.2}-3+3x=2\times \frac{5x-0\times 4}{0.3}
The opposite of -3x is 3x.
2\times \frac{8-8x}{1.2}-3+3x=2\times \frac{5x-0}{0.3}
Multiply 0 and 4 to get 0.
2\left(\frac{8}{1.2}+\frac{-8x}{1.2}\right)-3+3x=2\times \frac{5x-0}{0.3}
Divide each term of 8-8x by 1.2 to get \frac{8}{1.2}+\frac{-8x}{1.2}.
2\left(\frac{80}{12}+\frac{-8x}{1.2}\right)-3+3x=2\times \frac{5x-0}{0.3}
Expand \frac{8}{1.2} by multiplying both numerator and the denominator by 10.
2\left(\frac{20}{3}+\frac{-8x}{1.2}\right)-3+3x=2\times \frac{5x-0}{0.3}
Reduce the fraction \frac{80}{12} to lowest terms by extracting and canceling out 4.
2\left(\frac{20}{3}-\frac{20}{3}x\right)-3+3x=2\times \frac{5x-0}{0.3}
Divide -8x by 1.2 to get -\frac{20}{3}x.
2\times \frac{20}{3}-\frac{40}{3}x-3+3x=2\times \frac{5x-0}{0.3}
Use the distributive property to multiply 2 by \frac{20}{3}-\frac{20}{3}x.
\frac{2\times 20}{3}-\frac{40}{3}x-3+3x=2\times \frac{5x-0}{0.3}
Express 2\times \frac{20}{3} as a single fraction.
\frac{40}{3}-\frac{40}{3}x-3+3x=2\times \frac{5x-0}{0.3}
Multiply 2 and 20 to get 40.
\frac{40}{3}-\frac{40}{3}x-\frac{9}{3}+3x=2\times \frac{5x-0}{0.3}
Convert 3 to fraction \frac{9}{3}.
\frac{40-9}{3}-\frac{40}{3}x+3x=2\times \frac{5x-0}{0.3}
Since \frac{40}{3} and \frac{9}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{31}{3}-\frac{40}{3}x+3x=2\times \frac{5x-0}{0.3}
Subtract 9 from 40 to get 31.
\frac{31}{3}-\frac{31}{3}x=2\times \frac{5x-0}{0.3}
Combine -\frac{40}{3}x and 3x to get -\frac{31}{3}x.
\frac{31}{3}-\frac{31}{3}x=2\left(\frac{5x}{0.3}-\frac{0}{0.3}\right)
Divide each term of 5x-0 by 0.3 to get \frac{5x}{0.3}-\frac{0}{0.3}.
\frac{31}{3}-\frac{31}{3}x=2\left(\frac{50}{3}x-\frac{0}{0.3}\right)
Divide 5x by 0.3 to get \frac{50}{3}x.
\frac{31}{3}-\frac{31}{3}x=2\left(\frac{50}{3}x+0\right)
Zero divided by any non-zero number gives zero.
\frac{31}{3}-\frac{31}{3}x=2\times \frac{50}{3}x
Anything plus zero gives itself.
\frac{31}{3}-\frac{31}{3}x=\frac{100}{3}x
Multiply 2 and \frac{50}{3} to get \frac{100}{3}.
\frac{31}{3}-\frac{31}{3}x-\frac{100}{3}x=0
Subtract \frac{100}{3}x from both sides.
\frac{31}{3}-\frac{131}{3}x=0
Combine -\frac{31}{3}x and -\frac{100}{3}x to get -\frac{131}{3}x.
-\frac{131}{3}x=-\frac{31}{3}
Subtract \frac{31}{3} from both sides. Anything subtracted from zero gives its negation.
x=\frac{-\frac{31}{3}}{-\frac{131}{3}}
Divide both sides by -\frac{131}{3}.
x=\frac{-31}{3\left(-\frac{131}{3}\right)}
Express \frac{-\frac{31}{3}}{-\frac{131}{3}} as a single fraction.
x=\frac{-31}{-131}
Multiply 3 and -\frac{131}{3} to get -131.
x=\frac{31}{131}
Fraction \frac{-31}{-131} can be simplified to \frac{31}{131} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}