Solve for p
p=\frac{qz}{q-z}
z\neq 0\text{ and }q\neq 0\text{ and }z\neq q
Solve for q
q=\frac{pz}{p-z}
z\neq 0\text{ and }p\neq 0\text{ and }z\neq p
Share
Copied to clipboard
pq-qz=pz
Variable p cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by pqz, the least common multiple of z,p,q.
pq-qz-pz=0
Subtract pz from both sides.
pq-pz=qz
Add qz to both sides. Anything plus zero gives itself.
\left(q-z\right)p=qz
Combine all terms containing p.
\frac{\left(q-z\right)p}{q-z}=\frac{qz}{q-z}
Divide both sides by -z+q.
p=\frac{qz}{q-z}
Dividing by -z+q undoes the multiplication by -z+q.
p=\frac{qz}{q-z}\text{, }p\neq 0
Variable p cannot be equal to 0.
pq-qz=pz
Variable q cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by pqz, the least common multiple of z,p,q.
-qz+pq=pz
Reorder the terms.
\left(-z+p\right)q=pz
Combine all terms containing q.
\left(p-z\right)q=pz
The equation is in standard form.
\frac{\left(p-z\right)q}{p-z}=\frac{pz}{p-z}
Divide both sides by p-z.
q=\frac{pz}{p-z}
Dividing by p-z undoes the multiplication by p-z.
q=\frac{pz}{p-z}\text{, }q\neq 0
Variable q cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}