\frac{ 1 }{ y } + \frac{ 2 }{ 7 } - \frac{ 3 }{ 2 { y }_{ 2 } }
Evaluate
\frac{4yy_{2}-21y+14y_{2}}{14yy_{2}}
Factor
\frac{\left(4-\frac{21}{y_{2}}\right)y+14}{14y}
Graph
Share
Copied to clipboard
\frac{7}{7y}+\frac{2y}{7y}-\frac{3}{2y_{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and 7 is 7y. Multiply \frac{1}{y} times \frac{7}{7}. Multiply \frac{2}{7} times \frac{y}{y}.
\frac{7+2y}{7y}-\frac{3}{2y_{2}}
Since \frac{7}{7y} and \frac{2y}{7y} have the same denominator, add them by adding their numerators.
\frac{\left(7+2y\right)\times 2y_{2}}{14yy_{2}}-\frac{3\times 7y}{14yy_{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 7y and 2y_{2} is 14yy_{2}. Multiply \frac{7+2y}{7y} times \frac{2y_{2}}{2y_{2}}. Multiply \frac{3}{2y_{2}} times \frac{7y}{7y}.
\frac{\left(7+2y\right)\times 2y_{2}-3\times 7y}{14yy_{2}}
Since \frac{\left(7+2y\right)\times 2y_{2}}{14yy_{2}} and \frac{3\times 7y}{14yy_{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{14y_{2}+4yy_{2}-21y}{14yy_{2}}
Do the multiplications in \left(7+2y\right)\times 2y_{2}-3\times 7y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}