Solve for x (complex solution)
x=\frac{-25\sqrt{31}i-225}{2}\approx -112.5-69.597054535i
x=\frac{-225+25\sqrt{31}i}{2}\approx -112.5+69.597054535i
Graph
Share
Copied to clipboard
1=\frac{1}{50}\left(x+350\right)\left(700+9x\right)^{-1}\left(100+x\right)\times 2
Variable x cannot be equal to -350 since division by zero is not defined. Multiply both sides of the equation by x+350.
1=\frac{1}{25}\left(x+350\right)\left(700+9x\right)^{-1}\left(100+x\right)
Multiply \frac{1}{50} and 2 to get \frac{1}{25}.
1=\left(\frac{1}{25}x+14\right)\left(700+9x\right)^{-1}\left(100+x\right)
Use the distributive property to multiply \frac{1}{25} by x+350.
1=\left(\frac{1}{25}x\left(700+9x\right)^{-1}+14\left(700+9x\right)^{-1}\right)\left(100+x\right)
Use the distributive property to multiply \frac{1}{25}x+14 by \left(700+9x\right)^{-1}.
1=18\left(700+9x\right)^{-1}x+\frac{1}{25}\left(700+9x\right)^{-1}x^{2}+1400\left(700+9x\right)^{-1}
Use the distributive property to multiply \frac{1}{25}x\left(700+9x\right)^{-1}+14\left(700+9x\right)^{-1} by 100+x and combine like terms.
18\left(700+9x\right)^{-1}x+\frac{1}{25}\left(700+9x\right)^{-1}x^{2}+1400\left(700+9x\right)^{-1}=1
Swap sides so that all variable terms are on the left hand side.
18\left(700+9x\right)^{-1}x+\frac{1}{25}\left(700+9x\right)^{-1}x^{2}+1400\left(700+9x\right)^{-1}-1=0
Subtract 1 from both sides.
\frac{1}{25}\times \frac{1}{9x+700}x^{2}+18\times \frac{1}{9x+700}x-1+1400\times \frac{1}{9x+700}=0
Reorder the terms.
\frac{1}{25}\times 25\times 1x^{2}+18\times 25\times 1x+25\left(9x+700\right)\left(-1\right)+1400\times 25\times 1=0
Variable x cannot be equal to -\frac{700}{9} since division by zero is not defined. Multiply both sides of the equation by 25\left(9x+700\right), the least common multiple of 25,9x+700.
\frac{1}{25}\times 25\times 1x^{2}+450\times 1x+25\left(9x+700\right)\left(-1\right)+35000\times 1=0
Do the multiplications.
1x^{2}+450\times 1x+25\left(9x+700\right)\left(-1\right)+35000\times 1=0
Multiply \frac{1}{25} and 25 to get 1.
1x^{2}+450x+25\left(9x+700\right)\left(-1\right)+35000\times 1=0
Multiply 450 and 1 to get 450.
1x^{2}+450x-25\left(9x+700\right)+35000\times 1=0
Multiply 25 and -1 to get -25.
1x^{2}+450x-225x-17500+35000\times 1=0
Use the distributive property to multiply -25 by 9x+700.
1x^{2}+225x-17500+35000\times 1=0
Combine 450x and -225x to get 225x.
1x^{2}+225x-17500+35000=0
Multiply 35000 and 1 to get 35000.
1x^{2}+225x+17500=0
Add -17500 and 35000 to get 17500.
x^{2}+225x+17500=0
Reorder the terms.
x=\frac{-225±\sqrt{225^{2}-4\times 17500}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 225 for b, and 17500 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-225±\sqrt{50625-4\times 17500}}{2}
Square 225.
x=\frac{-225±\sqrt{50625-70000}}{2}
Multiply -4 times 17500.
x=\frac{-225±\sqrt{-19375}}{2}
Add 50625 to -70000.
x=\frac{-225±25\sqrt{31}i}{2}
Take the square root of -19375.
x=\frac{-225+25\sqrt{31}i}{2}
Now solve the equation x=\frac{-225±25\sqrt{31}i}{2} when ± is plus. Add -225 to 25i\sqrt{31}.
x=\frac{-25\sqrt{31}i-225}{2}
Now solve the equation x=\frac{-225±25\sqrt{31}i}{2} when ± is minus. Subtract 25i\sqrt{31} from -225.
x=\frac{-225+25\sqrt{31}i}{2} x=\frac{-25\sqrt{31}i-225}{2}
The equation is now solved.
1=\frac{1}{50}\left(x+350\right)\left(700+9x\right)^{-1}\left(100+x\right)\times 2
Variable x cannot be equal to -350 since division by zero is not defined. Multiply both sides of the equation by x+350.
1=\frac{1}{25}\left(x+350\right)\left(700+9x\right)^{-1}\left(100+x\right)
Multiply \frac{1}{50} and 2 to get \frac{1}{25}.
1=\left(\frac{1}{25}x+14\right)\left(700+9x\right)^{-1}\left(100+x\right)
Use the distributive property to multiply \frac{1}{25} by x+350.
1=\left(\frac{1}{25}x\left(700+9x\right)^{-1}+14\left(700+9x\right)^{-1}\right)\left(100+x\right)
Use the distributive property to multiply \frac{1}{25}x+14 by \left(700+9x\right)^{-1}.
1=18\left(700+9x\right)^{-1}x+\frac{1}{25}\left(700+9x\right)^{-1}x^{2}+1400\left(700+9x\right)^{-1}
Use the distributive property to multiply \frac{1}{25}x\left(700+9x\right)^{-1}+14\left(700+9x\right)^{-1} by 100+x and combine like terms.
18\left(700+9x\right)^{-1}x+\frac{1}{25}\left(700+9x\right)^{-1}x^{2}+1400\left(700+9x\right)^{-1}=1
Swap sides so that all variable terms are on the left hand side.
\frac{1}{25}\times \frac{1}{9x+700}x^{2}+18\times \frac{1}{9x+700}x+1400\times \frac{1}{9x+700}=1
Reorder the terms.
\frac{1}{25}\times 25\times 1x^{2}+18\times 25\times 1x+1400\times 25\times 1=25\left(9x+700\right)
Variable x cannot be equal to -\frac{700}{9} since division by zero is not defined. Multiply both sides of the equation by 25\left(9x+700\right), the least common multiple of 25,9x+700.
\frac{1}{25}\times 25\times 1x^{2}+450\times 1x+35000\times 1=25\left(9x+700\right)
Do the multiplications.
1x^{2}+450\times 1x+35000\times 1=25\left(9x+700\right)
Multiply \frac{1}{25} and 25 to get 1.
1x^{2}+450x+35000\times 1=25\left(9x+700\right)
Multiply 450 and 1 to get 450.
1x^{2}+450x+35000=25\left(9x+700\right)
Multiply 35000 and 1 to get 35000.
1x^{2}+450x+35000=225x+17500
Use the distributive property to multiply 25 by 9x+700.
1x^{2}+450x+35000-225x=17500
Subtract 225x from both sides.
1x^{2}+225x+35000=17500
Combine 450x and -225x to get 225x.
1x^{2}+225x=17500-35000
Subtract 35000 from both sides.
1x^{2}+225x=-17500
Subtract 35000 from 17500 to get -17500.
x^{2}+225x=-17500
Reorder the terms.
x^{2}+225x+\left(\frac{225}{2}\right)^{2}=-17500+\left(\frac{225}{2}\right)^{2}
Divide 225, the coefficient of the x term, by 2 to get \frac{225}{2}. Then add the square of \frac{225}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+225x+\frac{50625}{4}=-17500+\frac{50625}{4}
Square \frac{225}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+225x+\frac{50625}{4}=-\frac{19375}{4}
Add -17500 to \frac{50625}{4}.
\left(x+\frac{225}{2}\right)^{2}=-\frac{19375}{4}
Factor x^{2}+225x+\frac{50625}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{225}{2}\right)^{2}}=\sqrt{-\frac{19375}{4}}
Take the square root of both sides of the equation.
x+\frac{225}{2}=\frac{25\sqrt{31}i}{2} x+\frac{225}{2}=-\frac{25\sqrt{31}i}{2}
Simplify.
x=\frac{-225+25\sqrt{31}i}{2} x=\frac{-25\sqrt{31}i-225}{2}
Subtract \frac{225}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}