Solve for k
k=\frac{2x+3}{x+1}
x\neq -1
Solve for x
x=-\frac{3-k}{2-k}
k\neq 2
Graph
Share
Copied to clipboard
1+\left(x+1\right)\times 2=k\left(x+1\right)
Multiply both sides of the equation by x+1.
1+2x+2=k\left(x+1\right)
Use the distributive property to multiply x+1 by 2.
3+2x=k\left(x+1\right)
Add 1 and 2 to get 3.
3+2x=kx+k
Use the distributive property to multiply k by x+1.
kx+k=3+2x
Swap sides so that all variable terms are on the left hand side.
\left(x+1\right)k=3+2x
Combine all terms containing k.
\left(x+1\right)k=2x+3
The equation is in standard form.
\frac{\left(x+1\right)k}{x+1}=\frac{2x+3}{x+1}
Divide both sides by x+1.
k=\frac{2x+3}{x+1}
Dividing by x+1 undoes the multiplication by x+1.
1+\left(x+1\right)\times 2=k\left(x+1\right)
Variable x cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by x+1.
1+2x+2=k\left(x+1\right)
Use the distributive property to multiply x+1 by 2.
3+2x=k\left(x+1\right)
Add 1 and 2 to get 3.
3+2x=kx+k
Use the distributive property to multiply k by x+1.
3+2x-kx=k
Subtract kx from both sides.
2x-kx=k-3
Subtract 3 from both sides.
\left(2-k\right)x=k-3
Combine all terms containing x.
\frac{\left(2-k\right)x}{2-k}=\frac{k-3}{2-k}
Divide both sides by 2-k.
x=\frac{k-3}{2-k}
Dividing by 2-k undoes the multiplication by 2-k.
x=\frac{k-3}{2-k}\text{, }x\neq -1
Variable x cannot be equal to -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}