Skip to main content
Solve for y (complex solution)
Tick mark Image
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x+6\right)^{2}+\frac{1}{2}\left(x+6\right)^{2}\left(x+1\right)^{\frac{1}{2}}-\left(x+1\right)\times 54=y\left(x+1\right)\left(x+6\right)^{2}
Multiply both sides of the equation by \left(x+1\right)\left(x+6\right)^{2}, the least common multiple of x+1,\left(x+6\right)^{2}.
x^{2}+12x+36+\frac{1}{2}\left(x+6\right)^{2}\left(x+1\right)^{\frac{1}{2}}-\left(x+1\right)\times 54=y\left(x+1\right)\left(x+6\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+6\right)^{2}.
x^{2}+12x+36+\frac{1}{2}\left(x^{2}+12x+36\right)\left(x+1\right)^{\frac{1}{2}}-\left(x+1\right)\times 54=y\left(x+1\right)\left(x+6\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+6\right)^{2}.
x^{2}+12x+36+\left(\frac{1}{2}x^{2}+6x+18\right)\left(x+1\right)^{\frac{1}{2}}-\left(x+1\right)\times 54=y\left(x+1\right)\left(x+6\right)^{2}
Use the distributive property to multiply \frac{1}{2} by x^{2}+12x+36.
x^{2}+12x+36+\frac{1}{2}x^{2}\left(x+1\right)^{\frac{1}{2}}+6x\left(x+1\right)^{\frac{1}{2}}+18\left(x+1\right)^{\frac{1}{2}}-\left(x+1\right)\times 54=y\left(x+1\right)\left(x+6\right)^{2}
Use the distributive property to multiply \frac{1}{2}x^{2}+6x+18 by \left(x+1\right)^{\frac{1}{2}}.
x^{2}+12x+36+\frac{1}{2}x^{2}\left(x+1\right)^{\frac{1}{2}}+6x\left(x+1\right)^{\frac{1}{2}}+18\left(x+1\right)^{\frac{1}{2}}-\left(54x+54\right)=y\left(x+1\right)\left(x+6\right)^{2}
Use the distributive property to multiply x+1 by 54.
x^{2}+12x+36+\frac{1}{2}x^{2}\left(x+1\right)^{\frac{1}{2}}+6x\left(x+1\right)^{\frac{1}{2}}+18\left(x+1\right)^{\frac{1}{2}}-54x-54=y\left(x+1\right)\left(x+6\right)^{2}
To find the opposite of 54x+54, find the opposite of each term.
x^{2}-42x+36+\frac{1}{2}x^{2}\left(x+1\right)^{\frac{1}{2}}+6x\left(x+1\right)^{\frac{1}{2}}+18\left(x+1\right)^{\frac{1}{2}}-54=y\left(x+1\right)\left(x+6\right)^{2}
Combine 12x and -54x to get -42x.
x^{2}-42x-18+\frac{1}{2}x^{2}\left(x+1\right)^{\frac{1}{2}}+6x\left(x+1\right)^{\frac{1}{2}}+18\left(x+1\right)^{\frac{1}{2}}=y\left(x+1\right)\left(x+6\right)^{2}
Subtract 54 from 36 to get -18.
x^{2}-42x-18+\frac{1}{2}x^{2}\left(x+1\right)^{\frac{1}{2}}+6x\left(x+1\right)^{\frac{1}{2}}+18\left(x+1\right)^{\frac{1}{2}}=y\left(x+1\right)\left(x^{2}+12x+36\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+6\right)^{2}.
x^{2}-42x-18+\frac{1}{2}x^{2}\left(x+1\right)^{\frac{1}{2}}+6x\left(x+1\right)^{\frac{1}{2}}+18\left(x+1\right)^{\frac{1}{2}}=\left(yx+y\right)\left(x^{2}+12x+36\right)
Use the distributive property to multiply y by x+1.
x^{2}-42x-18+\frac{1}{2}x^{2}\left(x+1\right)^{\frac{1}{2}}+6x\left(x+1\right)^{\frac{1}{2}}+18\left(x+1\right)^{\frac{1}{2}}=yx^{3}+13yx^{2}+48yx+36y
Use the distributive property to multiply yx+y by x^{2}+12x+36 and combine like terms.
yx^{3}+13yx^{2}+48yx+36y=x^{2}-42x-18+\frac{1}{2}x^{2}\left(x+1\right)^{\frac{1}{2}}+6x\left(x+1\right)^{\frac{1}{2}}+18\left(x+1\right)^{\frac{1}{2}}
Swap sides so that all variable terms are on the left hand side.
48xy+yx^{3}+13yx^{2}+36y=\frac{1}{2}\sqrt{x+1}x^{2}+x^{2}+6\sqrt{x+1}x-42x+18\sqrt{x+1}-18
Reorder the terms.
\left(48x+x^{3}+13x^{2}+36\right)y=\frac{1}{2}\sqrt{x+1}x^{2}+x^{2}+6\sqrt{x+1}x-42x+18\sqrt{x+1}-18
Combine all terms containing y.
\left(x^{3}+13x^{2}+48x+36\right)y=\frac{\sqrt{x+1}x^{2}}{2}+x^{2}+6\sqrt{x+1}x-42x+18\sqrt{x+1}-18
The equation is in standard form.
\frac{\left(x^{3}+13x^{2}+48x+36\right)y}{x^{3}+13x^{2}+48x+36}=\frac{\frac{\sqrt{x+1}x^{2}}{2}+x^{2}+6\sqrt{x+1}x-42x+18\sqrt{x+1}-18}{x^{3}+13x^{2}+48x+36}
Divide both sides by 48x+x^{3}+13x^{2}+36.
y=\frac{\frac{\sqrt{x+1}x^{2}}{2}+x^{2}+6\sqrt{x+1}x-42x+18\sqrt{x+1}-18}{x^{3}+13x^{2}+48x+36}
Dividing by 48x+x^{3}+13x^{2}+36 undoes the multiplication by 48x+x^{3}+13x^{2}+36.
y=\frac{\sqrt{x+1}x^{2}+2x^{2}+12\sqrt{x+1}x-84x+36\sqrt{x+1}-36}{2\left(x+1\right)\left(x+6\right)^{2}}
Divide \frac{\sqrt{x+1}x^{2}}{2}+x^{2}+6\sqrt{x+1}x-42x+18\sqrt{x+1}-18 by 48x+x^{3}+13x^{2}+36.
\left(x+6\right)^{2}+\frac{1}{2}\left(x+6\right)^{2}\left(x+1\right)^{\frac{1}{2}}-\left(x+1\right)\times 54=y\left(x+1\right)\left(x+6\right)^{2}
Multiply both sides of the equation by \left(x+1\right)\left(x+6\right)^{2}, the least common multiple of x+1,\left(x+6\right)^{2}.
x^{2}+12x+36+\frac{1}{2}\left(x+6\right)^{2}\left(x+1\right)^{\frac{1}{2}}-\left(x+1\right)\times 54=y\left(x+1\right)\left(x+6\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+6\right)^{2}.
x^{2}+12x+36+\frac{1}{2}\left(x^{2}+12x+36\right)\left(x+1\right)^{\frac{1}{2}}-\left(x+1\right)\times 54=y\left(x+1\right)\left(x+6\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+6\right)^{2}.
x^{2}+12x+36+\left(\frac{1}{2}x^{2}+6x+18\right)\left(x+1\right)^{\frac{1}{2}}-\left(x+1\right)\times 54=y\left(x+1\right)\left(x+6\right)^{2}
Use the distributive property to multiply \frac{1}{2} by x^{2}+12x+36.
x^{2}+12x+36+\frac{1}{2}x^{2}\left(x+1\right)^{\frac{1}{2}}+6x\left(x+1\right)^{\frac{1}{2}}+18\left(x+1\right)^{\frac{1}{2}}-\left(x+1\right)\times 54=y\left(x+1\right)\left(x+6\right)^{2}
Use the distributive property to multiply \frac{1}{2}x^{2}+6x+18 by \left(x+1\right)^{\frac{1}{2}}.
x^{2}+12x+36+\frac{1}{2}x^{2}\left(x+1\right)^{\frac{1}{2}}+6x\left(x+1\right)^{\frac{1}{2}}+18\left(x+1\right)^{\frac{1}{2}}-\left(54x+54\right)=y\left(x+1\right)\left(x+6\right)^{2}
Use the distributive property to multiply x+1 by 54.
x^{2}+12x+36+\frac{1}{2}x^{2}\left(x+1\right)^{\frac{1}{2}}+6x\left(x+1\right)^{\frac{1}{2}}+18\left(x+1\right)^{\frac{1}{2}}-54x-54=y\left(x+1\right)\left(x+6\right)^{2}
To find the opposite of 54x+54, find the opposite of each term.
x^{2}-42x+36+\frac{1}{2}x^{2}\left(x+1\right)^{\frac{1}{2}}+6x\left(x+1\right)^{\frac{1}{2}}+18\left(x+1\right)^{\frac{1}{2}}-54=y\left(x+1\right)\left(x+6\right)^{2}
Combine 12x and -54x to get -42x.
x^{2}-42x-18+\frac{1}{2}x^{2}\left(x+1\right)^{\frac{1}{2}}+6x\left(x+1\right)^{\frac{1}{2}}+18\left(x+1\right)^{\frac{1}{2}}=y\left(x+1\right)\left(x+6\right)^{2}
Subtract 54 from 36 to get -18.
x^{2}-42x-18+\frac{1}{2}x^{2}\left(x+1\right)^{\frac{1}{2}}+6x\left(x+1\right)^{\frac{1}{2}}+18\left(x+1\right)^{\frac{1}{2}}=y\left(x+1\right)\left(x^{2}+12x+36\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+6\right)^{2}.
x^{2}-42x-18+\frac{1}{2}x^{2}\left(x+1\right)^{\frac{1}{2}}+6x\left(x+1\right)^{\frac{1}{2}}+18\left(x+1\right)^{\frac{1}{2}}=\left(yx+y\right)\left(x^{2}+12x+36\right)
Use the distributive property to multiply y by x+1.
x^{2}-42x-18+\frac{1}{2}x^{2}\left(x+1\right)^{\frac{1}{2}}+6x\left(x+1\right)^{\frac{1}{2}}+18\left(x+1\right)^{\frac{1}{2}}=yx^{3}+13yx^{2}+48yx+36y
Use the distributive property to multiply yx+y by x^{2}+12x+36 and combine like terms.
yx^{3}+13yx^{2}+48yx+36y=x^{2}-42x-18+\frac{1}{2}x^{2}\left(x+1\right)^{\frac{1}{2}}+6x\left(x+1\right)^{\frac{1}{2}}+18\left(x+1\right)^{\frac{1}{2}}
Swap sides so that all variable terms are on the left hand side.
48xy+yx^{3}+13yx^{2}+36y=\frac{1}{2}\sqrt{x+1}x^{2}+x^{2}+6\sqrt{x+1}x-42x+18\sqrt{x+1}-18
Reorder the terms.
\left(48x+x^{3}+13x^{2}+36\right)y=\frac{1}{2}\sqrt{x+1}x^{2}+x^{2}+6\sqrt{x+1}x-42x+18\sqrt{x+1}-18
Combine all terms containing y.
\left(x^{3}+13x^{2}+48x+36\right)y=\frac{\sqrt{x+1}x^{2}}{2}+x^{2}+6\sqrt{x+1}x-42x+18\sqrt{x+1}-18
The equation is in standard form.
\frac{\left(x^{3}+13x^{2}+48x+36\right)y}{x^{3}+13x^{2}+48x+36}=\frac{\frac{\sqrt{x+1}x^{2}}{2}+x^{2}+6\sqrt{x+1}x-42x+18\sqrt{x+1}-18}{x^{3}+13x^{2}+48x+36}
Divide both sides by 48x+x^{3}+13x^{2}+36.
y=\frac{\frac{\sqrt{x+1}x^{2}}{2}+x^{2}+6\sqrt{x+1}x-42x+18\sqrt{x+1}-18}{x^{3}+13x^{2}+48x+36}
Dividing by 48x+x^{3}+13x^{2}+36 undoes the multiplication by 48x+x^{3}+13x^{2}+36.
y=\frac{\sqrt{x+1}x^{2}+2x^{2}+12\sqrt{x+1}x-84x+36\sqrt{x+1}-36}{2\left(x+1\right)\left(x+6\right)^{2}}
Divide \frac{\sqrt{x+1}x^{2}}{2}+x^{2}+6\sqrt{x+1}x-42x+18\sqrt{x+1}-18 by 48x+x^{3}+13x^{2}+36.