Solve for y (complex solution)
y=\frac{\left(x+1\right)^{-\frac{3}{2}}\left(x^{3}+2\sqrt{x+1}x^{2}+13x^{2}-84\sqrt{x+1}x+48x-36\sqrt{x+1}+36\right)}{2\left(x+6\right)^{2}}
x\neq -1\text{ and }x\neq -6
Solve for y
y=\frac{\sqrt{x+1}x^{2}+2x^{2}+12\sqrt{x+1}x-84x+36\sqrt{x+1}-36}{2\left(x+1\right)\left(x+6\right)^{2}}
x>-1
Graph
Share
Copied to clipboard
\left(x+6\right)^{2}+\frac{1}{2}\left(x+6\right)^{2}\left(x+1\right)^{\frac{1}{2}}-\left(x+1\right)\times 54=y\left(x+1\right)\left(x+6\right)^{2}
Multiply both sides of the equation by \left(x+1\right)\left(x+6\right)^{2}, the least common multiple of x+1,\left(x+6\right)^{2}.
x^{2}+12x+36+\frac{1}{2}\left(x+6\right)^{2}\left(x+1\right)^{\frac{1}{2}}-\left(x+1\right)\times 54=y\left(x+1\right)\left(x+6\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+6\right)^{2}.
x^{2}+12x+36+\frac{1}{2}\left(x^{2}+12x+36\right)\left(x+1\right)^{\frac{1}{2}}-\left(x+1\right)\times 54=y\left(x+1\right)\left(x+6\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+6\right)^{2}.
x^{2}+12x+36+\left(\frac{1}{2}x^{2}+6x+18\right)\left(x+1\right)^{\frac{1}{2}}-\left(x+1\right)\times 54=y\left(x+1\right)\left(x+6\right)^{2}
Use the distributive property to multiply \frac{1}{2} by x^{2}+12x+36.
x^{2}+12x+36+\frac{1}{2}x^{2}\left(x+1\right)^{\frac{1}{2}}+6x\left(x+1\right)^{\frac{1}{2}}+18\left(x+1\right)^{\frac{1}{2}}-\left(x+1\right)\times 54=y\left(x+1\right)\left(x+6\right)^{2}
Use the distributive property to multiply \frac{1}{2}x^{2}+6x+18 by \left(x+1\right)^{\frac{1}{2}}.
x^{2}+12x+36+\frac{1}{2}x^{2}\left(x+1\right)^{\frac{1}{2}}+6x\left(x+1\right)^{\frac{1}{2}}+18\left(x+1\right)^{\frac{1}{2}}-\left(54x+54\right)=y\left(x+1\right)\left(x+6\right)^{2}
Use the distributive property to multiply x+1 by 54.
x^{2}+12x+36+\frac{1}{2}x^{2}\left(x+1\right)^{\frac{1}{2}}+6x\left(x+1\right)^{\frac{1}{2}}+18\left(x+1\right)^{\frac{1}{2}}-54x-54=y\left(x+1\right)\left(x+6\right)^{2}
To find the opposite of 54x+54, find the opposite of each term.
x^{2}-42x+36+\frac{1}{2}x^{2}\left(x+1\right)^{\frac{1}{2}}+6x\left(x+1\right)^{\frac{1}{2}}+18\left(x+1\right)^{\frac{1}{2}}-54=y\left(x+1\right)\left(x+6\right)^{2}
Combine 12x and -54x to get -42x.
x^{2}-42x-18+\frac{1}{2}x^{2}\left(x+1\right)^{\frac{1}{2}}+6x\left(x+1\right)^{\frac{1}{2}}+18\left(x+1\right)^{\frac{1}{2}}=y\left(x+1\right)\left(x+6\right)^{2}
Subtract 54 from 36 to get -18.
x^{2}-42x-18+\frac{1}{2}x^{2}\left(x+1\right)^{\frac{1}{2}}+6x\left(x+1\right)^{\frac{1}{2}}+18\left(x+1\right)^{\frac{1}{2}}=y\left(x+1\right)\left(x^{2}+12x+36\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+6\right)^{2}.
x^{2}-42x-18+\frac{1}{2}x^{2}\left(x+1\right)^{\frac{1}{2}}+6x\left(x+1\right)^{\frac{1}{2}}+18\left(x+1\right)^{\frac{1}{2}}=\left(yx+y\right)\left(x^{2}+12x+36\right)
Use the distributive property to multiply y by x+1.
x^{2}-42x-18+\frac{1}{2}x^{2}\left(x+1\right)^{\frac{1}{2}}+6x\left(x+1\right)^{\frac{1}{2}}+18\left(x+1\right)^{\frac{1}{2}}=yx^{3}+13yx^{2}+48yx+36y
Use the distributive property to multiply yx+y by x^{2}+12x+36 and combine like terms.
yx^{3}+13yx^{2}+48yx+36y=x^{2}-42x-18+\frac{1}{2}x^{2}\left(x+1\right)^{\frac{1}{2}}+6x\left(x+1\right)^{\frac{1}{2}}+18\left(x+1\right)^{\frac{1}{2}}
Swap sides so that all variable terms are on the left hand side.
48xy+yx^{3}+13yx^{2}+36y=\frac{1}{2}\sqrt{x+1}x^{2}+x^{2}+6\sqrt{x+1}x-42x+18\sqrt{x+1}-18
Reorder the terms.
\left(48x+x^{3}+13x^{2}+36\right)y=\frac{1}{2}\sqrt{x+1}x^{2}+x^{2}+6\sqrt{x+1}x-42x+18\sqrt{x+1}-18
Combine all terms containing y.
\left(x^{3}+13x^{2}+48x+36\right)y=\frac{\sqrt{x+1}x^{2}}{2}+x^{2}+6\sqrt{x+1}x-42x+18\sqrt{x+1}-18
The equation is in standard form.
\frac{\left(x^{3}+13x^{2}+48x+36\right)y}{x^{3}+13x^{2}+48x+36}=\frac{\frac{\sqrt{x+1}x^{2}}{2}+x^{2}+6\sqrt{x+1}x-42x+18\sqrt{x+1}-18}{x^{3}+13x^{2}+48x+36}
Divide both sides by 48x+x^{3}+13x^{2}+36.
y=\frac{\frac{\sqrt{x+1}x^{2}}{2}+x^{2}+6\sqrt{x+1}x-42x+18\sqrt{x+1}-18}{x^{3}+13x^{2}+48x+36}
Dividing by 48x+x^{3}+13x^{2}+36 undoes the multiplication by 48x+x^{3}+13x^{2}+36.
y=\frac{\sqrt{x+1}x^{2}+2x^{2}+12\sqrt{x+1}x-84x+36\sqrt{x+1}-36}{2\left(x+1\right)\left(x+6\right)^{2}}
Divide \frac{\sqrt{x+1}x^{2}}{2}+x^{2}+6\sqrt{x+1}x-42x+18\sqrt{x+1}-18 by 48x+x^{3}+13x^{2}+36.
\left(x+6\right)^{2}+\frac{1}{2}\left(x+6\right)^{2}\left(x+1\right)^{\frac{1}{2}}-\left(x+1\right)\times 54=y\left(x+1\right)\left(x+6\right)^{2}
Multiply both sides of the equation by \left(x+1\right)\left(x+6\right)^{2}, the least common multiple of x+1,\left(x+6\right)^{2}.
x^{2}+12x+36+\frac{1}{2}\left(x+6\right)^{2}\left(x+1\right)^{\frac{1}{2}}-\left(x+1\right)\times 54=y\left(x+1\right)\left(x+6\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+6\right)^{2}.
x^{2}+12x+36+\frac{1}{2}\left(x^{2}+12x+36\right)\left(x+1\right)^{\frac{1}{2}}-\left(x+1\right)\times 54=y\left(x+1\right)\left(x+6\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+6\right)^{2}.
x^{2}+12x+36+\left(\frac{1}{2}x^{2}+6x+18\right)\left(x+1\right)^{\frac{1}{2}}-\left(x+1\right)\times 54=y\left(x+1\right)\left(x+6\right)^{2}
Use the distributive property to multiply \frac{1}{2} by x^{2}+12x+36.
x^{2}+12x+36+\frac{1}{2}x^{2}\left(x+1\right)^{\frac{1}{2}}+6x\left(x+1\right)^{\frac{1}{2}}+18\left(x+1\right)^{\frac{1}{2}}-\left(x+1\right)\times 54=y\left(x+1\right)\left(x+6\right)^{2}
Use the distributive property to multiply \frac{1}{2}x^{2}+6x+18 by \left(x+1\right)^{\frac{1}{2}}.
x^{2}+12x+36+\frac{1}{2}x^{2}\left(x+1\right)^{\frac{1}{2}}+6x\left(x+1\right)^{\frac{1}{2}}+18\left(x+1\right)^{\frac{1}{2}}-\left(54x+54\right)=y\left(x+1\right)\left(x+6\right)^{2}
Use the distributive property to multiply x+1 by 54.
x^{2}+12x+36+\frac{1}{2}x^{2}\left(x+1\right)^{\frac{1}{2}}+6x\left(x+1\right)^{\frac{1}{2}}+18\left(x+1\right)^{\frac{1}{2}}-54x-54=y\left(x+1\right)\left(x+6\right)^{2}
To find the opposite of 54x+54, find the opposite of each term.
x^{2}-42x+36+\frac{1}{2}x^{2}\left(x+1\right)^{\frac{1}{2}}+6x\left(x+1\right)^{\frac{1}{2}}+18\left(x+1\right)^{\frac{1}{2}}-54=y\left(x+1\right)\left(x+6\right)^{2}
Combine 12x and -54x to get -42x.
x^{2}-42x-18+\frac{1}{2}x^{2}\left(x+1\right)^{\frac{1}{2}}+6x\left(x+1\right)^{\frac{1}{2}}+18\left(x+1\right)^{\frac{1}{2}}=y\left(x+1\right)\left(x+6\right)^{2}
Subtract 54 from 36 to get -18.
x^{2}-42x-18+\frac{1}{2}x^{2}\left(x+1\right)^{\frac{1}{2}}+6x\left(x+1\right)^{\frac{1}{2}}+18\left(x+1\right)^{\frac{1}{2}}=y\left(x+1\right)\left(x^{2}+12x+36\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+6\right)^{2}.
x^{2}-42x-18+\frac{1}{2}x^{2}\left(x+1\right)^{\frac{1}{2}}+6x\left(x+1\right)^{\frac{1}{2}}+18\left(x+1\right)^{\frac{1}{2}}=\left(yx+y\right)\left(x^{2}+12x+36\right)
Use the distributive property to multiply y by x+1.
x^{2}-42x-18+\frac{1}{2}x^{2}\left(x+1\right)^{\frac{1}{2}}+6x\left(x+1\right)^{\frac{1}{2}}+18\left(x+1\right)^{\frac{1}{2}}=yx^{3}+13yx^{2}+48yx+36y
Use the distributive property to multiply yx+y by x^{2}+12x+36 and combine like terms.
yx^{3}+13yx^{2}+48yx+36y=x^{2}-42x-18+\frac{1}{2}x^{2}\left(x+1\right)^{\frac{1}{2}}+6x\left(x+1\right)^{\frac{1}{2}}+18\left(x+1\right)^{\frac{1}{2}}
Swap sides so that all variable terms are on the left hand side.
48xy+yx^{3}+13yx^{2}+36y=\frac{1}{2}\sqrt{x+1}x^{2}+x^{2}+6\sqrt{x+1}x-42x+18\sqrt{x+1}-18
Reorder the terms.
\left(48x+x^{3}+13x^{2}+36\right)y=\frac{1}{2}\sqrt{x+1}x^{2}+x^{2}+6\sqrt{x+1}x-42x+18\sqrt{x+1}-18
Combine all terms containing y.
\left(x^{3}+13x^{2}+48x+36\right)y=\frac{\sqrt{x+1}x^{2}}{2}+x^{2}+6\sqrt{x+1}x-42x+18\sqrt{x+1}-18
The equation is in standard form.
\frac{\left(x^{3}+13x^{2}+48x+36\right)y}{x^{3}+13x^{2}+48x+36}=\frac{\frac{\sqrt{x+1}x^{2}}{2}+x^{2}+6\sqrt{x+1}x-42x+18\sqrt{x+1}-18}{x^{3}+13x^{2}+48x+36}
Divide both sides by 48x+x^{3}+13x^{2}+36.
y=\frac{\frac{\sqrt{x+1}x^{2}}{2}+x^{2}+6\sqrt{x+1}x-42x+18\sqrt{x+1}-18}{x^{3}+13x^{2}+48x+36}
Dividing by 48x+x^{3}+13x^{2}+36 undoes the multiplication by 48x+x^{3}+13x^{2}+36.
y=\frac{\sqrt{x+1}x^{2}+2x^{2}+12\sqrt{x+1}x-84x+36\sqrt{x+1}-36}{2\left(x+1\right)\left(x+6\right)^{2}}
Divide \frac{\sqrt{x+1}x^{2}}{2}+x^{2}+6\sqrt{x+1}x-42x+18\sqrt{x+1}-18 by 48x+x^{3}+13x^{2}+36.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}