Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-2-x=3x\left(x-2\right)
Variable x cannot be equal to any of the values 0,2 since division by zero is not defined. Multiply both sides of the equation by x\left(x-2\right), the least common multiple of x,x-2.
x-2-x=3x^{2}-6x
Use the distributive property to multiply 3x by x-2.
x-2-x-3x^{2}=-6x
Subtract 3x^{2} from both sides.
x-2-x-3x^{2}+6x=0
Add 6x to both sides.
7x-2-x-3x^{2}=0
Combine x and 6x to get 7x.
6x-2-3x^{2}=0
Combine 7x and -x to get 6x.
-3x^{2}+6x-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{6^{2}-4\left(-3\right)\left(-2\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 6 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-3\right)\left(-2\right)}}{2\left(-3\right)}
Square 6.
x=\frac{-6±\sqrt{36+12\left(-2\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-6±\sqrt{36-24}}{2\left(-3\right)}
Multiply 12 times -2.
x=\frac{-6±\sqrt{12}}{2\left(-3\right)}
Add 36 to -24.
x=\frac{-6±2\sqrt{3}}{2\left(-3\right)}
Take the square root of 12.
x=\frac{-6±2\sqrt{3}}{-6}
Multiply 2 times -3.
x=\frac{2\sqrt{3}-6}{-6}
Now solve the equation x=\frac{-6±2\sqrt{3}}{-6} when ± is plus. Add -6 to 2\sqrt{3}.
x=-\frac{\sqrt{3}}{3}+1
Divide -6+2\sqrt{3} by -6.
x=\frac{-2\sqrt{3}-6}{-6}
Now solve the equation x=\frac{-6±2\sqrt{3}}{-6} when ± is minus. Subtract 2\sqrt{3} from -6.
x=\frac{\sqrt{3}}{3}+1
Divide -6-2\sqrt{3} by -6.
x=-\frac{\sqrt{3}}{3}+1 x=\frac{\sqrt{3}}{3}+1
The equation is now solved.
x-2-x=3x\left(x-2\right)
Variable x cannot be equal to any of the values 0,2 since division by zero is not defined. Multiply both sides of the equation by x\left(x-2\right), the least common multiple of x,x-2.
x-2-x=3x^{2}-6x
Use the distributive property to multiply 3x by x-2.
x-2-x-3x^{2}=-6x
Subtract 3x^{2} from both sides.
x-2-x-3x^{2}+6x=0
Add 6x to both sides.
7x-2-x-3x^{2}=0
Combine x and 6x to get 7x.
7x-x-3x^{2}=2
Add 2 to both sides. Anything plus zero gives itself.
6x-3x^{2}=2
Combine 7x and -x to get 6x.
-3x^{2}+6x=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}+6x}{-3}=\frac{2}{-3}
Divide both sides by -3.
x^{2}+\frac{6}{-3}x=\frac{2}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-2x=\frac{2}{-3}
Divide 6 by -3.
x^{2}-2x=-\frac{2}{3}
Divide 2 by -3.
x^{2}-2x+1=-\frac{2}{3}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=\frac{1}{3}
Add -\frac{2}{3} to 1.
\left(x-1\right)^{2}=\frac{1}{3}
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{1}{3}}
Take the square root of both sides of the equation.
x-1=\frac{\sqrt{3}}{3} x-1=-\frac{\sqrt{3}}{3}
Simplify.
x=\frac{\sqrt{3}}{3}+1 x=-\frac{\sqrt{3}}{3}+1
Add 1 to both sides of the equation.