Solve for x
x=-\frac{2013y}{2013-y}
y\neq 0\text{ and }y\neq 2013
Solve for y
y=-\frac{2013x}{2013-x}
x\neq 0\text{ and }x\neq 2013
Graph
Share
Copied to clipboard
2013y+2013x=xy
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2013xy, the least common multiple of x,y,2013.
2013y+2013x-xy=0
Subtract xy from both sides.
2013x-xy=-2013y
Subtract 2013y from both sides. Anything subtracted from zero gives its negation.
\left(2013-y\right)x=-2013y
Combine all terms containing x.
\frac{\left(2013-y\right)x}{2013-y}=-\frac{2013y}{2013-y}
Divide both sides by 2013-y.
x=-\frac{2013y}{2013-y}
Dividing by 2013-y undoes the multiplication by 2013-y.
x=-\frac{2013y}{2013-y}\text{, }x\neq 0
Variable x cannot be equal to 0.
2013y+2013x=xy
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2013xy, the least common multiple of x,y,2013.
2013y+2013x-xy=0
Subtract xy from both sides.
2013y-xy=-2013x
Subtract 2013x from both sides. Anything subtracted from zero gives its negation.
\left(2013-x\right)y=-2013x
Combine all terms containing y.
\frac{\left(2013-x\right)y}{2013-x}=-\frac{2013x}{2013-x}
Divide both sides by 2013-x.
y=-\frac{2013x}{2013-x}
Dividing by 2013-x undoes the multiplication by 2013-x.
y=-\frac{2013x}{2013-x}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}