Solve for a
a=-\frac{bt-1}{t+1}
t\neq 0\text{ and }t\neq -1
Solve for b
b=-\frac{at+a-1}{t}
t\neq 0\text{ and }t\neq -1
Share
Copied to clipboard
1=\left(t+1\right)a+tb
Multiply both sides of the equation by t\left(t+1\right), the least common multiple of t\left(1+t\right),t,1+t.
1=ta+a+tb
Use the distributive property to multiply t+1 by a.
ta+a+tb=1
Swap sides so that all variable terms are on the left hand side.
ta+a=1-tb
Subtract tb from both sides.
\left(t+1\right)a=1-tb
Combine all terms containing a.
\left(t+1\right)a=1-bt
The equation is in standard form.
\frac{\left(t+1\right)a}{t+1}=\frac{1-bt}{t+1}
Divide both sides by 1+t.
a=\frac{1-bt}{t+1}
Dividing by 1+t undoes the multiplication by 1+t.
1=\left(t+1\right)a+tb
Multiply both sides of the equation by t\left(t+1\right), the least common multiple of t\left(1+t\right),t,1+t.
1=ta+a+tb
Use the distributive property to multiply t+1 by a.
ta+a+tb=1
Swap sides so that all variable terms are on the left hand side.
a+tb=1-ta
Subtract ta from both sides.
tb=1-ta-a
Subtract a from both sides.
tb=1-a-at
The equation is in standard form.
\frac{tb}{t}=\frac{1-a-at}{t}
Divide both sides by t.
b=\frac{1-a-at}{t}
Dividing by t undoes the multiplication by t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}