Evaluate
4
Factor
2^{2}
Share
Copied to clipboard
\frac{8+2\sqrt{15}}{\left(8-2\sqrt{15}\right)\left(8+2\sqrt{15}\right)}+\frac{1}{8+2\sqrt{15}}
Rationalize the denominator of \frac{1}{8-2\sqrt{15}} by multiplying numerator and denominator by 8+2\sqrt{15}.
\frac{8+2\sqrt{15}}{8^{2}-\left(-2\sqrt{15}\right)^{2}}+\frac{1}{8+2\sqrt{15}}
Consider \left(8-2\sqrt{15}\right)\left(8+2\sqrt{15}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{8+2\sqrt{15}}{64-\left(-2\sqrt{15}\right)^{2}}+\frac{1}{8+2\sqrt{15}}
Calculate 8 to the power of 2 and get 64.
\frac{8+2\sqrt{15}}{64-\left(-2\right)^{2}\left(\sqrt{15}\right)^{2}}+\frac{1}{8+2\sqrt{15}}
Expand \left(-2\sqrt{15}\right)^{2}.
\frac{8+2\sqrt{15}}{64-4\left(\sqrt{15}\right)^{2}}+\frac{1}{8+2\sqrt{15}}
Calculate -2 to the power of 2 and get 4.
\frac{8+2\sqrt{15}}{64-4\times 15}+\frac{1}{8+2\sqrt{15}}
The square of \sqrt{15} is 15.
\frac{8+2\sqrt{15}}{64-60}+\frac{1}{8+2\sqrt{15}}
Multiply 4 and 15 to get 60.
\frac{8+2\sqrt{15}}{4}+\frac{1}{8+2\sqrt{15}}
Subtract 60 from 64 to get 4.
\frac{8+2\sqrt{15}}{4}+\frac{8-2\sqrt{15}}{\left(8+2\sqrt{15}\right)\left(8-2\sqrt{15}\right)}
Rationalize the denominator of \frac{1}{8+2\sqrt{15}} by multiplying numerator and denominator by 8-2\sqrt{15}.
\frac{8+2\sqrt{15}}{4}+\frac{8-2\sqrt{15}}{8^{2}-\left(2\sqrt{15}\right)^{2}}
Consider \left(8+2\sqrt{15}\right)\left(8-2\sqrt{15}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{8+2\sqrt{15}}{4}+\frac{8-2\sqrt{15}}{64-\left(2\sqrt{15}\right)^{2}}
Calculate 8 to the power of 2 and get 64.
\frac{8+2\sqrt{15}}{4}+\frac{8-2\sqrt{15}}{64-2^{2}\left(\sqrt{15}\right)^{2}}
Expand \left(2\sqrt{15}\right)^{2}.
\frac{8+2\sqrt{15}}{4}+\frac{8-2\sqrt{15}}{64-4\left(\sqrt{15}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{8+2\sqrt{15}}{4}+\frac{8-2\sqrt{15}}{64-4\times 15}
The square of \sqrt{15} is 15.
\frac{8+2\sqrt{15}}{4}+\frac{8-2\sqrt{15}}{64-60}
Multiply 4 and 15 to get 60.
\frac{8+2\sqrt{15}}{4}+\frac{8-2\sqrt{15}}{4}
Subtract 60 from 64 to get 4.
\frac{8+2\sqrt{15}+8-2\sqrt{15}}{4}
Since \frac{8+2\sqrt{15}}{4} and \frac{8-2\sqrt{15}}{4} have the same denominator, add them by adding their numerators.
\frac{16}{4}
Do the calculations in 8+2\sqrt{15}+8-2\sqrt{15}.
4
Divide 16 by 4 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}