Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{8+2\sqrt{15}}{\left(8-2\sqrt{15}\right)\left(8+2\sqrt{15}\right)}+\frac{1}{8+2\sqrt{15}}
Rationalize the denominator of \frac{1}{8-2\sqrt{15}} by multiplying numerator and denominator by 8+2\sqrt{15}.
\frac{8+2\sqrt{15}}{8^{2}-\left(-2\sqrt{15}\right)^{2}}+\frac{1}{8+2\sqrt{15}}
Consider \left(8-2\sqrt{15}\right)\left(8+2\sqrt{15}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{8+2\sqrt{15}}{64-\left(-2\sqrt{15}\right)^{2}}+\frac{1}{8+2\sqrt{15}}
Calculate 8 to the power of 2 and get 64.
\frac{8+2\sqrt{15}}{64-\left(-2\right)^{2}\left(\sqrt{15}\right)^{2}}+\frac{1}{8+2\sqrt{15}}
Expand \left(-2\sqrt{15}\right)^{2}.
\frac{8+2\sqrt{15}}{64-4\left(\sqrt{15}\right)^{2}}+\frac{1}{8+2\sqrt{15}}
Calculate -2 to the power of 2 and get 4.
\frac{8+2\sqrt{15}}{64-4\times 15}+\frac{1}{8+2\sqrt{15}}
The square of \sqrt{15} is 15.
\frac{8+2\sqrt{15}}{64-60}+\frac{1}{8+2\sqrt{15}}
Multiply 4 and 15 to get 60.
\frac{8+2\sqrt{15}}{4}+\frac{1}{8+2\sqrt{15}}
Subtract 60 from 64 to get 4.
\frac{8+2\sqrt{15}}{4}+\frac{8-2\sqrt{15}}{\left(8+2\sqrt{15}\right)\left(8-2\sqrt{15}\right)}
Rationalize the denominator of \frac{1}{8+2\sqrt{15}} by multiplying numerator and denominator by 8-2\sqrt{15}.
\frac{8+2\sqrt{15}}{4}+\frac{8-2\sqrt{15}}{8^{2}-\left(2\sqrt{15}\right)^{2}}
Consider \left(8+2\sqrt{15}\right)\left(8-2\sqrt{15}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{8+2\sqrt{15}}{4}+\frac{8-2\sqrt{15}}{64-\left(2\sqrt{15}\right)^{2}}
Calculate 8 to the power of 2 and get 64.
\frac{8+2\sqrt{15}}{4}+\frac{8-2\sqrt{15}}{64-2^{2}\left(\sqrt{15}\right)^{2}}
Expand \left(2\sqrt{15}\right)^{2}.
\frac{8+2\sqrt{15}}{4}+\frac{8-2\sqrt{15}}{64-4\left(\sqrt{15}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{8+2\sqrt{15}}{4}+\frac{8-2\sqrt{15}}{64-4\times 15}
The square of \sqrt{15} is 15.
\frac{8+2\sqrt{15}}{4}+\frac{8-2\sqrt{15}}{64-60}
Multiply 4 and 15 to get 60.
\frac{8+2\sqrt{15}}{4}+\frac{8-2\sqrt{15}}{4}
Subtract 60 from 64 to get 4.
\frac{8+2\sqrt{15}+8-2\sqrt{15}}{4}
Since \frac{8+2\sqrt{15}}{4} and \frac{8-2\sqrt{15}}{4} have the same denominator, add them by adding their numerators.
\frac{16}{4}
Do the calculations in 8+2\sqrt{15}+8-2\sqrt{15}.
4
Divide 16 by 4 to get 4.