Evaluate
\frac{3}{28}\approx 0.107142857
Factor
\frac{3}{2 ^ {2} \cdot 7} = 0.10714285714285714
Share
Copied to clipboard
\frac{1\left(-9\right)}{7\times 2}-\frac{1}{6}\left(-\frac{9}{2}\right)
Multiply \frac{1}{7} times -\frac{9}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{-9}{14}-\frac{1}{6}\left(-\frac{9}{2}\right)
Do the multiplications in the fraction \frac{1\left(-9\right)}{7\times 2}.
-\frac{9}{14}-\frac{1}{6}\left(-\frac{9}{2}\right)
Fraction \frac{-9}{14} can be rewritten as -\frac{9}{14} by extracting the negative sign.
-\frac{9}{14}-\frac{1\left(-9\right)}{6\times 2}
Multiply \frac{1}{6} times -\frac{9}{2} by multiplying numerator times numerator and denominator times denominator.
-\frac{9}{14}-\frac{-9}{12}
Do the multiplications in the fraction \frac{1\left(-9\right)}{6\times 2}.
-\frac{9}{14}-\left(-\frac{3}{4}\right)
Reduce the fraction \frac{-9}{12} to lowest terms by extracting and canceling out 3.
-\frac{9}{14}+\frac{3}{4}
The opposite of -\frac{3}{4} is \frac{3}{4}.
-\frac{18}{28}+\frac{21}{28}
Least common multiple of 14 and 4 is 28. Convert -\frac{9}{14} and \frac{3}{4} to fractions with denominator 28.
\frac{-18+21}{28}
Since -\frac{18}{28} and \frac{21}{28} have the same denominator, add them by adding their numerators.
\frac{3}{28}
Add -18 and 21 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}