Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{1\left(-9\right)}{7\times 2}-\frac{1}{6}\left(-\frac{9}{2}\right)
Multiply \frac{1}{7} times -\frac{9}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{-9}{14}-\frac{1}{6}\left(-\frac{9}{2}\right)
Do the multiplications in the fraction \frac{1\left(-9\right)}{7\times 2}.
-\frac{9}{14}-\frac{1}{6}\left(-\frac{9}{2}\right)
Fraction \frac{-9}{14} can be rewritten as -\frac{9}{14} by extracting the negative sign.
-\frac{9}{14}-\frac{1\left(-9\right)}{6\times 2}
Multiply \frac{1}{6} times -\frac{9}{2} by multiplying numerator times numerator and denominator times denominator.
-\frac{9}{14}-\frac{-9}{12}
Do the multiplications in the fraction \frac{1\left(-9\right)}{6\times 2}.
-\frac{9}{14}-\left(-\frac{3}{4}\right)
Reduce the fraction \frac{-9}{12} to lowest terms by extracting and canceling out 3.
-\frac{9}{14}+\frac{3}{4}
The opposite of -\frac{3}{4} is \frac{3}{4}.
-\frac{18}{28}+\frac{21}{28}
Least common multiple of 14 and 4 is 28. Convert -\frac{9}{14} and \frac{3}{4} to fractions with denominator 28.
\frac{-18+21}{28}
Since -\frac{18}{28} and \frac{21}{28} have the same denominator, add them by adding their numerators.
\frac{3}{28}
Add -18 and 21 to get 3.