Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{6-\sqrt{35}}{\left(6+\sqrt{35}\right)\left(6-\sqrt{35}\right)}+\frac{1}{6-\sqrt{35}}
Rationalize the denominator of \frac{1}{6+\sqrt{35}} by multiplying numerator and denominator by 6-\sqrt{35}.
\frac{6-\sqrt{35}}{6^{2}-\left(\sqrt{35}\right)^{2}}+\frac{1}{6-\sqrt{35}}
Consider \left(6+\sqrt{35}\right)\left(6-\sqrt{35}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{6-\sqrt{35}}{36-35}+\frac{1}{6-\sqrt{35}}
Square 6. Square \sqrt{35}.
\frac{6-\sqrt{35}}{1}+\frac{1}{6-\sqrt{35}}
Subtract 35 from 36 to get 1.
6-\sqrt{35}+\frac{1}{6-\sqrt{35}}
Anything divided by one gives itself.
6-\sqrt{35}+\frac{6+\sqrt{35}}{\left(6-\sqrt{35}\right)\left(6+\sqrt{35}\right)}
Rationalize the denominator of \frac{1}{6-\sqrt{35}} by multiplying numerator and denominator by 6+\sqrt{35}.
6-\sqrt{35}+\frac{6+\sqrt{35}}{6^{2}-\left(\sqrt{35}\right)^{2}}
Consider \left(6-\sqrt{35}\right)\left(6+\sqrt{35}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
6-\sqrt{35}+\frac{6+\sqrt{35}}{36-35}
Square 6. Square \sqrt{35}.
6-\sqrt{35}+\frac{6+\sqrt{35}}{1}
Subtract 35 from 36 to get 1.
6-\sqrt{35}+6+\sqrt{35}
Anything divided by one gives itself.
12-\sqrt{35}+\sqrt{35}
Add 6 and 6 to get 12.
12
Combine -\sqrt{35} and \sqrt{35} to get 0.