Solve for x
x = \frac{2 \sqrt{37} + 2}{3} \approx 4.721841687
x=\frac{2-2\sqrt{37}}{3}\approx -3.388508354
Graph
Share
Copied to clipboard
\frac{1}{6}x\times 3x+\frac{1}{6}x\left(-6\right)=8-\frac{1}{3}x
Use the distributive property to multiply \frac{1}{6}x by 3x-6.
\frac{1}{6}x^{2}\times 3+\frac{1}{6}x\left(-6\right)=8-\frac{1}{3}x
Multiply x and x to get x^{2}.
\frac{3}{6}x^{2}+\frac{1}{6}x\left(-6\right)=8-\frac{1}{3}x
Multiply \frac{1}{6} and 3 to get \frac{3}{6}.
\frac{1}{2}x^{2}+\frac{1}{6}x\left(-6\right)=8-\frac{1}{3}x
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\frac{1}{2}x^{2}+\frac{-6}{6}x=8-\frac{1}{3}x
Multiply \frac{1}{6} and -6 to get \frac{-6}{6}.
\frac{1}{2}x^{2}-x=8-\frac{1}{3}x
Divide -6 by 6 to get -1.
\frac{1}{2}x^{2}-x-8=-\frac{1}{3}x
Subtract 8 from both sides.
\frac{1}{2}x^{2}-x-8+\frac{1}{3}x=0
Add \frac{1}{3}x to both sides.
\frac{1}{2}x^{2}-\frac{2}{3}x-8=0
Combine -x and \frac{1}{3}x to get -\frac{2}{3}x.
x=\frac{-\left(-\frac{2}{3}\right)±\sqrt{\left(-\frac{2}{3}\right)^{2}-4\times \frac{1}{2}\left(-8\right)}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, -\frac{2}{3} for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{2}{3}\right)±\sqrt{\frac{4}{9}-4\times \frac{1}{2}\left(-8\right)}}{2\times \frac{1}{2}}
Square -\frac{2}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{2}{3}\right)±\sqrt{\frac{4}{9}-2\left(-8\right)}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-\left(-\frac{2}{3}\right)±\sqrt{\frac{4}{9}+16}}{2\times \frac{1}{2}}
Multiply -2 times -8.
x=\frac{-\left(-\frac{2}{3}\right)±\sqrt{\frac{148}{9}}}{2\times \frac{1}{2}}
Add \frac{4}{9} to 16.
x=\frac{-\left(-\frac{2}{3}\right)±\frac{2\sqrt{37}}{3}}{2\times \frac{1}{2}}
Take the square root of \frac{148}{9}.
x=\frac{\frac{2}{3}±\frac{2\sqrt{37}}{3}}{2\times \frac{1}{2}}
The opposite of -\frac{2}{3} is \frac{2}{3}.
x=\frac{\frac{2}{3}±\frac{2\sqrt{37}}{3}}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{2\sqrt{37}+2}{3}
Now solve the equation x=\frac{\frac{2}{3}±\frac{2\sqrt{37}}{3}}{1} when ± is plus. Add \frac{2}{3} to \frac{2\sqrt{37}}{3}.
x=\frac{2-2\sqrt{37}}{3}
Now solve the equation x=\frac{\frac{2}{3}±\frac{2\sqrt{37}}{3}}{1} when ± is minus. Subtract \frac{2\sqrt{37}}{3} from \frac{2}{3}.
x=\frac{2\sqrt{37}+2}{3} x=\frac{2-2\sqrt{37}}{3}
The equation is now solved.
\frac{1}{6}x\times 3x+\frac{1}{6}x\left(-6\right)=8-\frac{1}{3}x
Use the distributive property to multiply \frac{1}{6}x by 3x-6.
\frac{1}{6}x^{2}\times 3+\frac{1}{6}x\left(-6\right)=8-\frac{1}{3}x
Multiply x and x to get x^{2}.
\frac{3}{6}x^{2}+\frac{1}{6}x\left(-6\right)=8-\frac{1}{3}x
Multiply \frac{1}{6} and 3 to get \frac{3}{6}.
\frac{1}{2}x^{2}+\frac{1}{6}x\left(-6\right)=8-\frac{1}{3}x
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\frac{1}{2}x^{2}+\frac{-6}{6}x=8-\frac{1}{3}x
Multiply \frac{1}{6} and -6 to get \frac{-6}{6}.
\frac{1}{2}x^{2}-x=8-\frac{1}{3}x
Divide -6 by 6 to get -1.
\frac{1}{2}x^{2}-x+\frac{1}{3}x=8
Add \frac{1}{3}x to both sides.
\frac{1}{2}x^{2}-\frac{2}{3}x=8
Combine -x and \frac{1}{3}x to get -\frac{2}{3}x.
\frac{\frac{1}{2}x^{2}-\frac{2}{3}x}{\frac{1}{2}}=\frac{8}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\left(-\frac{\frac{2}{3}}{\frac{1}{2}}\right)x=\frac{8}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}-\frac{4}{3}x=\frac{8}{\frac{1}{2}}
Divide -\frac{2}{3} by \frac{1}{2} by multiplying -\frac{2}{3} by the reciprocal of \frac{1}{2}.
x^{2}-\frac{4}{3}x=16
Divide 8 by \frac{1}{2} by multiplying 8 by the reciprocal of \frac{1}{2}.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=16+\left(-\frac{2}{3}\right)^{2}
Divide -\frac{4}{3}, the coefficient of the x term, by 2 to get -\frac{2}{3}. Then add the square of -\frac{2}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{4}{3}x+\frac{4}{9}=16+\frac{4}{9}
Square -\frac{2}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{148}{9}
Add 16 to \frac{4}{9}.
\left(x-\frac{2}{3}\right)^{2}=\frac{148}{9}
Factor x^{2}-\frac{4}{3}x+\frac{4}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{\frac{148}{9}}
Take the square root of both sides of the equation.
x-\frac{2}{3}=\frac{2\sqrt{37}}{3} x-\frac{2}{3}=-\frac{2\sqrt{37}}{3}
Simplify.
x=\frac{2\sqrt{37}+2}{3} x=\frac{2-2\sqrt{37}}{3}
Add \frac{2}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}