Solve for x
x = -\frac{47}{8} = -5\frac{7}{8} = -5.875
x=0
Graph
Share
Copied to clipboard
\frac{1}{4}x-2x\left(x+6\right)=0
Multiply -1 and 2 to get -2.
\frac{1}{4}x-2x^{2}-12x=0
Use the distributive property to multiply -2x by x+6.
-\frac{47}{4}x-2x^{2}=0
Combine \frac{1}{4}x and -12x to get -\frac{47}{4}x.
x\left(-\frac{47}{4}-2x\right)=0
Factor out x.
x=0 x=-\frac{47}{8}
To find equation solutions, solve x=0 and -\frac{47}{4}-2x=0.
\frac{1}{4}x-2x\left(x+6\right)=0
Multiply -1 and 2 to get -2.
\frac{1}{4}x-2x^{2}-12x=0
Use the distributive property to multiply -2x by x+6.
-\frac{47}{4}x-2x^{2}=0
Combine \frac{1}{4}x and -12x to get -\frac{47}{4}x.
-2x^{2}-\frac{47}{4}x=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{47}{4}\right)±\sqrt{\left(-\frac{47}{4}\right)^{2}}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -\frac{47}{4} for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{47}{4}\right)±\frac{47}{4}}{2\left(-2\right)}
Take the square root of \left(-\frac{47}{4}\right)^{2}.
x=\frac{\frac{47}{4}±\frac{47}{4}}{2\left(-2\right)}
The opposite of -\frac{47}{4} is \frac{47}{4}.
x=\frac{\frac{47}{4}±\frac{47}{4}}{-4}
Multiply 2 times -2.
x=\frac{\frac{47}{2}}{-4}
Now solve the equation x=\frac{\frac{47}{4}±\frac{47}{4}}{-4} when ± is plus. Add \frac{47}{4} to \frac{47}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{47}{8}
Divide \frac{47}{2} by -4.
x=\frac{0}{-4}
Now solve the equation x=\frac{\frac{47}{4}±\frac{47}{4}}{-4} when ± is minus. Subtract \frac{47}{4} from \frac{47}{4} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=0
Divide 0 by -4.
x=-\frac{47}{8} x=0
The equation is now solved.
\frac{1}{4}x-2x\left(x+6\right)=0
Multiply -1 and 2 to get -2.
\frac{1}{4}x-2x^{2}-12x=0
Use the distributive property to multiply -2x by x+6.
-\frac{47}{4}x-2x^{2}=0
Combine \frac{1}{4}x and -12x to get -\frac{47}{4}x.
-2x^{2}-\frac{47}{4}x=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}-\frac{47}{4}x}{-2}=\frac{0}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{\frac{47}{4}}{-2}\right)x=\frac{0}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+\frac{47}{8}x=\frac{0}{-2}
Divide -\frac{47}{4} by -2.
x^{2}+\frac{47}{8}x=0
Divide 0 by -2.
x^{2}+\frac{47}{8}x+\left(\frac{47}{16}\right)^{2}=\left(\frac{47}{16}\right)^{2}
Divide \frac{47}{8}, the coefficient of the x term, by 2 to get \frac{47}{16}. Then add the square of \frac{47}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{47}{8}x+\frac{2209}{256}=\frac{2209}{256}
Square \frac{47}{16} by squaring both the numerator and the denominator of the fraction.
\left(x+\frac{47}{16}\right)^{2}=\frac{2209}{256}
Factor x^{2}+\frac{47}{8}x+\frac{2209}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{47}{16}\right)^{2}}=\sqrt{\frac{2209}{256}}
Take the square root of both sides of the equation.
x+\frac{47}{16}=\frac{47}{16} x+\frac{47}{16}=-\frac{47}{16}
Simplify.
x=0 x=-\frac{47}{8}
Subtract \frac{47}{16} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}