Solve for x
x = \frac{30}{7} = 4\frac{2}{7} \approx 4.285714286
Graph
Share
Copied to clipboard
\frac{1}{4}\times 2x+\frac{1}{4}\left(-5\right)=\frac{1}{3}\left(15-2x\right)-\frac{15}{12}
Use the distributive property to multiply \frac{1}{4} by 2x-5.
\frac{2}{4}x+\frac{1}{4}\left(-5\right)=\frac{1}{3}\left(15-2x\right)-\frac{15}{12}
Multiply \frac{1}{4} and 2 to get \frac{2}{4}.
\frac{1}{2}x+\frac{1}{4}\left(-5\right)=\frac{1}{3}\left(15-2x\right)-\frac{15}{12}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{1}{2}x+\frac{-5}{4}=\frac{1}{3}\left(15-2x\right)-\frac{15}{12}
Multiply \frac{1}{4} and -5 to get \frac{-5}{4}.
\frac{1}{2}x-\frac{5}{4}=\frac{1}{3}\left(15-2x\right)-\frac{15}{12}
Fraction \frac{-5}{4} can be rewritten as -\frac{5}{4} by extracting the negative sign.
\frac{1}{2}x-\frac{5}{4}=\frac{1}{3}\times 15+\frac{1}{3}\left(-2\right)x-\frac{15}{12}
Use the distributive property to multiply \frac{1}{3} by 15-2x.
\frac{1}{2}x-\frac{5}{4}=\frac{15}{3}+\frac{1}{3}\left(-2\right)x-\frac{15}{12}
Multiply \frac{1}{3} and 15 to get \frac{15}{3}.
\frac{1}{2}x-\frac{5}{4}=5+\frac{1}{3}\left(-2\right)x-\frac{15}{12}
Divide 15 by 3 to get 5.
\frac{1}{2}x-\frac{5}{4}=5+\frac{-2}{3}x-\frac{15}{12}
Multiply \frac{1}{3} and -2 to get \frac{-2}{3}.
\frac{1}{2}x-\frac{5}{4}=5-\frac{2}{3}x-\frac{15}{12}
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
\frac{1}{2}x-\frac{5}{4}=5-\frac{2}{3}x-\frac{5}{4}
Reduce the fraction \frac{15}{12} to lowest terms by extracting and canceling out 3.
\frac{1}{2}x-\frac{5}{4}=\frac{20}{4}-\frac{2}{3}x-\frac{5}{4}
Convert 5 to fraction \frac{20}{4}.
\frac{1}{2}x-\frac{5}{4}=\frac{20-5}{4}-\frac{2}{3}x
Since \frac{20}{4} and \frac{5}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}x-\frac{5}{4}=\frac{15}{4}-\frac{2}{3}x
Subtract 5 from 20 to get 15.
\frac{1}{2}x-\frac{5}{4}+\frac{2}{3}x=\frac{15}{4}
Add \frac{2}{3}x to both sides.
\frac{7}{6}x-\frac{5}{4}=\frac{15}{4}
Combine \frac{1}{2}x and \frac{2}{3}x to get \frac{7}{6}x.
\frac{7}{6}x=\frac{15}{4}+\frac{5}{4}
Add \frac{5}{4} to both sides.
\frac{7}{6}x=\frac{15+5}{4}
Since \frac{15}{4} and \frac{5}{4} have the same denominator, add them by adding their numerators.
\frac{7}{6}x=\frac{20}{4}
Add 15 and 5 to get 20.
\frac{7}{6}x=5
Divide 20 by 4 to get 5.
x=5\times \frac{6}{7}
Multiply both sides by \frac{6}{7}, the reciprocal of \frac{7}{6}.
x=\frac{5\times 6}{7}
Express 5\times \frac{6}{7} as a single fraction.
x=\frac{30}{7}
Multiply 5 and 6 to get 30.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}