Solve for y
y = \frac{\sqrt{61} + 6}{5} \approx 2.762049935
y=\frac{6-\sqrt{61}}{5}\approx -0.362049935
Graph
Share
Copied to clipboard
\frac{1}{4}y^{2}-\frac{3}{5}y-\frac{1}{4}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-\frac{3}{5}\right)±\sqrt{\left(-\frac{3}{5}\right)^{2}-4\times \frac{1}{4}\left(-\frac{1}{4}\right)}}{2\times \frac{1}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{4} for a, -\frac{3}{5} for b, and -\frac{1}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-\frac{3}{5}\right)±\sqrt{\frac{9}{25}-4\times \frac{1}{4}\left(-\frac{1}{4}\right)}}{2\times \frac{1}{4}}
Square -\frac{3}{5} by squaring both the numerator and the denominator of the fraction.
y=\frac{-\left(-\frac{3}{5}\right)±\sqrt{\frac{9}{25}-\left(-\frac{1}{4}\right)}}{2\times \frac{1}{4}}
Multiply -4 times \frac{1}{4}.
y=\frac{-\left(-\frac{3}{5}\right)±\sqrt{\frac{9}{25}+\frac{1}{4}}}{2\times \frac{1}{4}}
Multiply -1 times -\frac{1}{4}.
y=\frac{-\left(-\frac{3}{5}\right)±\sqrt{\frac{61}{100}}}{2\times \frac{1}{4}}
Add \frac{9}{25} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=\frac{-\left(-\frac{3}{5}\right)±\frac{\sqrt{61}}{10}}{2\times \frac{1}{4}}
Take the square root of \frac{61}{100}.
y=\frac{\frac{3}{5}±\frac{\sqrt{61}}{10}}{2\times \frac{1}{4}}
The opposite of -\frac{3}{5} is \frac{3}{5}.
y=\frac{\frac{3}{5}±\frac{\sqrt{61}}{10}}{\frac{1}{2}}
Multiply 2 times \frac{1}{4}.
y=\frac{\frac{\sqrt{61}}{10}+\frac{3}{5}}{\frac{1}{2}}
Now solve the equation y=\frac{\frac{3}{5}±\frac{\sqrt{61}}{10}}{\frac{1}{2}} when ± is plus. Add \frac{3}{5} to \frac{\sqrt{61}}{10}.
y=\frac{\sqrt{61}+6}{5}
Divide \frac{3}{5}+\frac{\sqrt{61}}{10} by \frac{1}{2} by multiplying \frac{3}{5}+\frac{\sqrt{61}}{10} by the reciprocal of \frac{1}{2}.
y=\frac{-\frac{\sqrt{61}}{10}+\frac{3}{5}}{\frac{1}{2}}
Now solve the equation y=\frac{\frac{3}{5}±\frac{\sqrt{61}}{10}}{\frac{1}{2}} when ± is minus. Subtract \frac{\sqrt{61}}{10} from \frac{3}{5}.
y=\frac{6-\sqrt{61}}{5}
Divide \frac{3}{5}-\frac{\sqrt{61}}{10} by \frac{1}{2} by multiplying \frac{3}{5}-\frac{\sqrt{61}}{10} by the reciprocal of \frac{1}{2}.
y=\frac{\sqrt{61}+6}{5} y=\frac{6-\sqrt{61}}{5}
The equation is now solved.
\frac{1}{4}y^{2}-\frac{3}{5}y-\frac{1}{4}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{1}{4}y^{2}-\frac{3}{5}y-\frac{1}{4}-\left(-\frac{1}{4}\right)=-\left(-\frac{1}{4}\right)
Add \frac{1}{4} to both sides of the equation.
\frac{1}{4}y^{2}-\frac{3}{5}y=-\left(-\frac{1}{4}\right)
Subtracting -\frac{1}{4} from itself leaves 0.
\frac{1}{4}y^{2}-\frac{3}{5}y=\frac{1}{4}
Subtract -\frac{1}{4} from 0.
\frac{\frac{1}{4}y^{2}-\frac{3}{5}y}{\frac{1}{4}}=\frac{\frac{1}{4}}{\frac{1}{4}}
Multiply both sides by 4.
y^{2}+\left(-\frac{\frac{3}{5}}{\frac{1}{4}}\right)y=\frac{\frac{1}{4}}{\frac{1}{4}}
Dividing by \frac{1}{4} undoes the multiplication by \frac{1}{4}.
y^{2}-\frac{12}{5}y=\frac{\frac{1}{4}}{\frac{1}{4}}
Divide -\frac{3}{5} by \frac{1}{4} by multiplying -\frac{3}{5} by the reciprocal of \frac{1}{4}.
y^{2}-\frac{12}{5}y=1
Divide \frac{1}{4} by \frac{1}{4} by multiplying \frac{1}{4} by the reciprocal of \frac{1}{4}.
y^{2}-\frac{12}{5}y+\left(-\frac{6}{5}\right)^{2}=1+\left(-\frac{6}{5}\right)^{2}
Divide -\frac{12}{5}, the coefficient of the x term, by 2 to get -\frac{6}{5}. Then add the square of -\frac{6}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{12}{5}y+\frac{36}{25}=1+\frac{36}{25}
Square -\frac{6}{5} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{12}{5}y+\frac{36}{25}=\frac{61}{25}
Add 1 to \frac{36}{25}.
\left(y-\frac{6}{5}\right)^{2}=\frac{61}{25}
Factor y^{2}-\frac{12}{5}y+\frac{36}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{6}{5}\right)^{2}}=\sqrt{\frac{61}{25}}
Take the square root of both sides of the equation.
y-\frac{6}{5}=\frac{\sqrt{61}}{5} y-\frac{6}{5}=-\frac{\sqrt{61}}{5}
Simplify.
y=\frac{\sqrt{61}+6}{5} y=\frac{6-\sqrt{61}}{5}
Add \frac{6}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}