Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{4}x^{2}+1.3x-5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1.3±\sqrt{1.3^{2}-4\times \frac{1}{4}\left(-5\right)}}{2\times \frac{1}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{4} for a, 1.3 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1.3±\sqrt{1.69-4\times \frac{1}{4}\left(-5\right)}}{2\times \frac{1}{4}}
Square 1.3 by squaring both the numerator and the denominator of the fraction.
x=\frac{-1.3±\sqrt{1.69-\left(-5\right)}}{2\times \frac{1}{4}}
Multiply -4 times \frac{1}{4}.
x=\frac{-1.3±\sqrt{1.69+5}}{2\times \frac{1}{4}}
Multiply -1 times -5.
x=\frac{-1.3±\sqrt{6.69}}{2\times \frac{1}{4}}
Add 1.69 to 5.
x=\frac{-1.3±\frac{\sqrt{669}}{10}}{2\times \frac{1}{4}}
Take the square root of 6.69.
x=\frac{-1.3±\frac{\sqrt{669}}{10}}{\frac{1}{2}}
Multiply 2 times \frac{1}{4}.
x=\frac{\sqrt{669}-13}{\frac{1}{2}\times 10}
Now solve the equation x=\frac{-1.3±\frac{\sqrt{669}}{10}}{\frac{1}{2}} when ± is plus. Add -1.3 to \frac{\sqrt{669}}{10}.
x=\frac{\sqrt{669}-13}{5}
Divide \frac{-13+\sqrt{669}}{10} by \frac{1}{2} by multiplying \frac{-13+\sqrt{669}}{10} by the reciprocal of \frac{1}{2}.
x=\frac{-\sqrt{669}-13}{\frac{1}{2}\times 10}
Now solve the equation x=\frac{-1.3±\frac{\sqrt{669}}{10}}{\frac{1}{2}} when ± is minus. Subtract \frac{\sqrt{669}}{10} from -1.3.
x=\frac{-\sqrt{669}-13}{5}
Divide \frac{-13-\sqrt{669}}{10} by \frac{1}{2} by multiplying \frac{-13-\sqrt{669}}{10} by the reciprocal of \frac{1}{2}.
x=\frac{\sqrt{669}-13}{5} x=\frac{-\sqrt{669}-13}{5}
The equation is now solved.
\frac{1}{4}x^{2}+1.3x-5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{1}{4}x^{2}+1.3x-5-\left(-5\right)=-\left(-5\right)
Add 5 to both sides of the equation.
\frac{1}{4}x^{2}+1.3x=-\left(-5\right)
Subtracting -5 from itself leaves 0.
\frac{1}{4}x^{2}+1.3x=5
Subtract -5 from 0.
\frac{\frac{1}{4}x^{2}+1.3x}{\frac{1}{4}}=\frac{5}{\frac{1}{4}}
Multiply both sides by 4.
x^{2}+\frac{1.3}{\frac{1}{4}}x=\frac{5}{\frac{1}{4}}
Dividing by \frac{1}{4} undoes the multiplication by \frac{1}{4}.
x^{2}+\frac{26}{5}x=\frac{5}{\frac{1}{4}}
Divide 1.3 by \frac{1}{4} by multiplying 1.3 by the reciprocal of \frac{1}{4}.
x^{2}+\frac{26}{5}x=20
Divide 5 by \frac{1}{4} by multiplying 5 by the reciprocal of \frac{1}{4}.
x^{2}+\frac{26}{5}x+\left(\frac{13}{5}\right)^{2}=20+\left(\frac{13}{5}\right)^{2}
Divide \frac{26}{5}, the coefficient of the x term, by 2 to get \frac{13}{5}. Then add the square of \frac{13}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{26}{5}x+\frac{169}{25}=20+\frac{169}{25}
Square \frac{13}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{26}{5}x+\frac{169}{25}=\frac{669}{25}
Add 20 to \frac{169}{25}.
\left(x+\frac{13}{5}\right)^{2}=\frac{669}{25}
Factor x^{2}+\frac{26}{5}x+\frac{169}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{13}{5}\right)^{2}}=\sqrt{\frac{669}{25}}
Take the square root of both sides of the equation.
x+\frac{13}{5}=\frac{\sqrt{669}}{5} x+\frac{13}{5}=-\frac{\sqrt{669}}{5}
Simplify.
x=\frac{\sqrt{669}-13}{5} x=\frac{-\sqrt{669}-13}{5}
Subtract \frac{13}{5} from both sides of the equation.