Solve for a
a=1
Share
Copied to clipboard
\frac{1}{4}a+\frac{1}{4}\times 3=2-a
Use the distributive property to multiply \frac{1}{4} by a+3.
\frac{1}{4}a+\frac{3}{4}=2-a
Multiply \frac{1}{4} and 3 to get \frac{3}{4}.
\frac{1}{4}a+\frac{3}{4}+a=2
Add a to both sides.
\frac{5}{4}a+\frac{3}{4}=2
Combine \frac{1}{4}a and a to get \frac{5}{4}a.
\frac{5}{4}a=2-\frac{3}{4}
Subtract \frac{3}{4} from both sides.
\frac{5}{4}a=\frac{8}{4}-\frac{3}{4}
Convert 2 to fraction \frac{8}{4}.
\frac{5}{4}a=\frac{8-3}{4}
Since \frac{8}{4} and \frac{3}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{4}a=\frac{5}{4}
Subtract 3 from 8 to get 5.
a=\frac{5}{4}\times \frac{4}{5}
Multiply both sides by \frac{4}{5}, the reciprocal of \frac{5}{4}.
a=1
Cancel out \frac{5}{4} and its reciprocal \frac{4}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}