Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4^{2}+\left(8-x\right)^{2}+\left(4+x\right)^{2}=88\times 4
Multiply both sides by 4, the reciprocal of \frac{1}{4}.
4^{2}+\left(8-x\right)^{2}+\left(4+x\right)^{2}=352
Multiply 88 and 4 to get 352.
16+\left(8-x\right)^{2}+\left(4+x\right)^{2}=352
Calculate 4 to the power of 2 and get 16.
16+64-16x+x^{2}+\left(4+x\right)^{2}=352
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8-x\right)^{2}.
80-16x+x^{2}+\left(4+x\right)^{2}=352
Add 16 and 64 to get 80.
80-16x+x^{2}+16+8x+x^{2}=352
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4+x\right)^{2}.
96-16x+x^{2}+8x+x^{2}=352
Add 80 and 16 to get 96.
96-8x+x^{2}+x^{2}=352
Combine -16x and 8x to get -8x.
96-8x+2x^{2}=352
Combine x^{2} and x^{2} to get 2x^{2}.
96-8x+2x^{2}-352=0
Subtract 352 from both sides.
-256-8x+2x^{2}=0
Subtract 352 from 96 to get -256.
2x^{2}-8x-256=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\left(-256\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -8 for b, and -256 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\left(-256\right)}}{2\times 2}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-8\left(-256\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-8\right)±\sqrt{64+2048}}{2\times 2}
Multiply -8 times -256.
x=\frac{-\left(-8\right)±\sqrt{2112}}{2\times 2}
Add 64 to 2048.
x=\frac{-\left(-8\right)±8\sqrt{33}}{2\times 2}
Take the square root of 2112.
x=\frac{8±8\sqrt{33}}{2\times 2}
The opposite of -8 is 8.
x=\frac{8±8\sqrt{33}}{4}
Multiply 2 times 2.
x=\frac{8\sqrt{33}+8}{4}
Now solve the equation x=\frac{8±8\sqrt{33}}{4} when ± is plus. Add 8 to 8\sqrt{33}.
x=2\sqrt{33}+2
Divide 8+8\sqrt{33} by 4.
x=\frac{8-8\sqrt{33}}{4}
Now solve the equation x=\frac{8±8\sqrt{33}}{4} when ± is minus. Subtract 8\sqrt{33} from 8.
x=2-2\sqrt{33}
Divide 8-8\sqrt{33} by 4.
x=2\sqrt{33}+2 x=2-2\sqrt{33}
The equation is now solved.
4^{2}+\left(8-x\right)^{2}+\left(4+x\right)^{2}=88\times 4
Multiply both sides by 4, the reciprocal of \frac{1}{4}.
4^{2}+\left(8-x\right)^{2}+\left(4+x\right)^{2}=352
Multiply 88 and 4 to get 352.
16+\left(8-x\right)^{2}+\left(4+x\right)^{2}=352
Calculate 4 to the power of 2 and get 16.
16+64-16x+x^{2}+\left(4+x\right)^{2}=352
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8-x\right)^{2}.
80-16x+x^{2}+\left(4+x\right)^{2}=352
Add 16 and 64 to get 80.
80-16x+x^{2}+16+8x+x^{2}=352
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4+x\right)^{2}.
96-16x+x^{2}+8x+x^{2}=352
Add 80 and 16 to get 96.
96-8x+x^{2}+x^{2}=352
Combine -16x and 8x to get -8x.
96-8x+2x^{2}=352
Combine x^{2} and x^{2} to get 2x^{2}.
-8x+2x^{2}=352-96
Subtract 96 from both sides.
-8x+2x^{2}=256
Subtract 96 from 352 to get 256.
2x^{2}-8x=256
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}-8x}{2}=\frac{256}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{8}{2}\right)x=\frac{256}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-4x=\frac{256}{2}
Divide -8 by 2.
x^{2}-4x=128
Divide 256 by 2.
x^{2}-4x+\left(-2\right)^{2}=128+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=128+4
Square -2.
x^{2}-4x+4=132
Add 128 to 4.
\left(x-2\right)^{2}=132
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{132}
Take the square root of both sides of the equation.
x-2=2\sqrt{33} x-2=-2\sqrt{33}
Simplify.
x=2\sqrt{33}+2 x=2-2\sqrt{33}
Add 2 to both sides of the equation.