\frac{ 1 }{ 4 } = \frac{ { \left(8-k \right) }^{ 2 } - { \left(2k+2 \right) }^{ 2 } }{ { \left(8-k \right) }^{ } }
Solve for k
k = \frac{\sqrt{20161} - 95}{24} \approx 1.957893176
k=\frac{-\sqrt{20161}-95}{24}\approx -9.874559843
Share
Copied to clipboard
k-8=-4\left(\left(8-k\right)^{2}-\left(2k+2\right)^{2}\right)
Variable k cannot be equal to 8 since division by zero is not defined. Multiply both sides of the equation by 4\left(k-8\right), the least common multiple of 4,\left(8-k\right)^{1}.
k-8=-4\left(64-16k+k^{2}-\left(2k+2\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8-k\right)^{2}.
k-8=-4\left(64-16k+k^{2}-\left(4k^{2}+8k+4\right)\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2k+2\right)^{2}.
k-8=-4\left(64-16k+k^{2}-4k^{2}-8k-4\right)
To find the opposite of 4k^{2}+8k+4, find the opposite of each term.
k-8=-4\left(64-16k-3k^{2}-8k-4\right)
Combine k^{2} and -4k^{2} to get -3k^{2}.
k-8=-4\left(64-24k-3k^{2}-4\right)
Combine -16k and -8k to get -24k.
k-8=-4\left(60-24k-3k^{2}\right)
Subtract 4 from 64 to get 60.
k-8=-240+96k+12k^{2}
Use the distributive property to multiply -4 by 60-24k-3k^{2}.
k-8-\left(-240\right)=96k+12k^{2}
Subtract -240 from both sides.
k-8+240=96k+12k^{2}
The opposite of -240 is 240.
k-8+240-96k=12k^{2}
Subtract 96k from both sides.
k+232-96k=12k^{2}
Add -8 and 240 to get 232.
-95k+232=12k^{2}
Combine k and -96k to get -95k.
-95k+232-12k^{2}=0
Subtract 12k^{2} from both sides.
-12k^{2}-95k+232=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
k=\frac{-\left(-95\right)±\sqrt{\left(-95\right)^{2}-4\left(-12\right)\times 232}}{2\left(-12\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -12 for a, -95 for b, and 232 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-\left(-95\right)±\sqrt{9025-4\left(-12\right)\times 232}}{2\left(-12\right)}
Square -95.
k=\frac{-\left(-95\right)±\sqrt{9025+48\times 232}}{2\left(-12\right)}
Multiply -4 times -12.
k=\frac{-\left(-95\right)±\sqrt{9025+11136}}{2\left(-12\right)}
Multiply 48 times 232.
k=\frac{-\left(-95\right)±\sqrt{20161}}{2\left(-12\right)}
Add 9025 to 11136.
k=\frac{95±\sqrt{20161}}{2\left(-12\right)}
The opposite of -95 is 95.
k=\frac{95±\sqrt{20161}}{-24}
Multiply 2 times -12.
k=\frac{\sqrt{20161}+95}{-24}
Now solve the equation k=\frac{95±\sqrt{20161}}{-24} when ± is plus. Add 95 to \sqrt{20161}.
k=\frac{-\sqrt{20161}-95}{24}
Divide 95+\sqrt{20161} by -24.
k=\frac{95-\sqrt{20161}}{-24}
Now solve the equation k=\frac{95±\sqrt{20161}}{-24} when ± is minus. Subtract \sqrt{20161} from 95.
k=\frac{\sqrt{20161}-95}{24}
Divide 95-\sqrt{20161} by -24.
k=\frac{-\sqrt{20161}-95}{24} k=\frac{\sqrt{20161}-95}{24}
The equation is now solved.
k-8=-4\left(\left(8-k\right)^{2}-\left(2k+2\right)^{2}\right)
Variable k cannot be equal to 8 since division by zero is not defined. Multiply both sides of the equation by 4\left(k-8\right), the least common multiple of 4,\left(8-k\right)^{1}.
k-8=-4\left(64-16k+k^{2}-\left(2k+2\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8-k\right)^{2}.
k-8=-4\left(64-16k+k^{2}-\left(4k^{2}+8k+4\right)\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2k+2\right)^{2}.
k-8=-4\left(64-16k+k^{2}-4k^{2}-8k-4\right)
To find the opposite of 4k^{2}+8k+4, find the opposite of each term.
k-8=-4\left(64-16k-3k^{2}-8k-4\right)
Combine k^{2} and -4k^{2} to get -3k^{2}.
k-8=-4\left(64-24k-3k^{2}-4\right)
Combine -16k and -8k to get -24k.
k-8=-4\left(60-24k-3k^{2}\right)
Subtract 4 from 64 to get 60.
k-8=-240+96k+12k^{2}
Use the distributive property to multiply -4 by 60-24k-3k^{2}.
k-8-96k=-240+12k^{2}
Subtract 96k from both sides.
-95k-8=-240+12k^{2}
Combine k and -96k to get -95k.
-95k-8-12k^{2}=-240
Subtract 12k^{2} from both sides.
-95k-12k^{2}=-240+8
Add 8 to both sides.
-95k-12k^{2}=-232
Add -240 and 8 to get -232.
-12k^{2}-95k=-232
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-12k^{2}-95k}{-12}=-\frac{232}{-12}
Divide both sides by -12.
k^{2}+\left(-\frac{95}{-12}\right)k=-\frac{232}{-12}
Dividing by -12 undoes the multiplication by -12.
k^{2}+\frac{95}{12}k=-\frac{232}{-12}
Divide -95 by -12.
k^{2}+\frac{95}{12}k=\frac{58}{3}
Reduce the fraction \frac{-232}{-12} to lowest terms by extracting and canceling out 4.
k^{2}+\frac{95}{12}k+\left(\frac{95}{24}\right)^{2}=\frac{58}{3}+\left(\frac{95}{24}\right)^{2}
Divide \frac{95}{12}, the coefficient of the x term, by 2 to get \frac{95}{24}. Then add the square of \frac{95}{24} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}+\frac{95}{12}k+\frac{9025}{576}=\frac{58}{3}+\frac{9025}{576}
Square \frac{95}{24} by squaring both the numerator and the denominator of the fraction.
k^{2}+\frac{95}{12}k+\frac{9025}{576}=\frac{20161}{576}
Add \frac{58}{3} to \frac{9025}{576} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(k+\frac{95}{24}\right)^{2}=\frac{20161}{576}
Factor k^{2}+\frac{95}{12}k+\frac{9025}{576}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k+\frac{95}{24}\right)^{2}}=\sqrt{\frac{20161}{576}}
Take the square root of both sides of the equation.
k+\frac{95}{24}=\frac{\sqrt{20161}}{24} k+\frac{95}{24}=-\frac{\sqrt{20161}}{24}
Simplify.
k=\frac{\sqrt{20161}-95}{24} k=\frac{-\sqrt{20161}-95}{24}
Subtract \frac{95}{24} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}