Solve for x
x = \frac{33}{4} = 8\frac{1}{4} = 8.25
Graph
Share
Copied to clipboard
\frac{1}{3}x+\frac{1}{4}=\frac{2}{5}x+\frac{2}{5}\left(-\frac{3}{4}\right)
Use the distributive property to multiply \frac{2}{5} by x-\frac{3}{4}.
\frac{1}{3}x+\frac{1}{4}=\frac{2}{5}x+\frac{2\left(-3\right)}{5\times 4}
Multiply \frac{2}{5} times -\frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3}x+\frac{1}{4}=\frac{2}{5}x+\frac{-6}{20}
Do the multiplications in the fraction \frac{2\left(-3\right)}{5\times 4}.
\frac{1}{3}x+\frac{1}{4}=\frac{2}{5}x-\frac{3}{10}
Reduce the fraction \frac{-6}{20} to lowest terms by extracting and canceling out 2.
\frac{1}{3}x+\frac{1}{4}-\frac{2}{5}x=-\frac{3}{10}
Subtract \frac{2}{5}x from both sides.
-\frac{1}{15}x+\frac{1}{4}=-\frac{3}{10}
Combine \frac{1}{3}x and -\frac{2}{5}x to get -\frac{1}{15}x.
-\frac{1}{15}x=-\frac{3}{10}-\frac{1}{4}
Subtract \frac{1}{4} from both sides.
-\frac{1}{15}x=-\frac{6}{20}-\frac{5}{20}
Least common multiple of 10 and 4 is 20. Convert -\frac{3}{10} and \frac{1}{4} to fractions with denominator 20.
-\frac{1}{15}x=\frac{-6-5}{20}
Since -\frac{6}{20} and \frac{5}{20} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{15}x=-\frac{11}{20}
Subtract 5 from -6 to get -11.
x=-\frac{11}{20}\left(-15\right)
Multiply both sides by -15, the reciprocal of -\frac{1}{15}.
x=\frac{-11\left(-15\right)}{20}
Express -\frac{11}{20}\left(-15\right) as a single fraction.
x=\frac{165}{20}
Multiply -11 and -15 to get 165.
x=\frac{33}{4}
Reduce the fraction \frac{165}{20} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}