Solve for x
x = \frac{\sqrt{259} + 5}{9} \approx 2.34371966
x=\frac{5-\sqrt{259}}{9}\approx -1.232608549
Graph
Share
Copied to clipboard
\frac{3}{2}x^{2}-\frac{5}{3}x-4=\frac{1}{3}
Swap sides so that all variable terms are on the left hand side.
\frac{3}{2}x^{2}-\frac{5}{3}x-4-\frac{1}{3}=0
Subtract \frac{1}{3} from both sides.
\frac{3}{2}x^{2}-\frac{5}{3}x-\frac{13}{3}=0
Subtract \frac{1}{3} from -4 to get -\frac{13}{3}.
x=\frac{-\left(-\frac{5}{3}\right)±\sqrt{\left(-\frac{5}{3}\right)^{2}-4\times \frac{3}{2}\left(-\frac{13}{3}\right)}}{2\times \frac{3}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{3}{2} for a, -\frac{5}{3} for b, and -\frac{13}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{5}{3}\right)±\sqrt{\frac{25}{9}-4\times \frac{3}{2}\left(-\frac{13}{3}\right)}}{2\times \frac{3}{2}}
Square -\frac{5}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{5}{3}\right)±\sqrt{\frac{25}{9}-6\left(-\frac{13}{3}\right)}}{2\times \frac{3}{2}}
Multiply -4 times \frac{3}{2}.
x=\frac{-\left(-\frac{5}{3}\right)±\sqrt{\frac{25}{9}+26}}{2\times \frac{3}{2}}
Multiply -6 times -\frac{13}{3}.
x=\frac{-\left(-\frac{5}{3}\right)±\sqrt{\frac{259}{9}}}{2\times \frac{3}{2}}
Add \frac{25}{9} to 26.
x=\frac{-\left(-\frac{5}{3}\right)±\frac{\sqrt{259}}{3}}{2\times \frac{3}{2}}
Take the square root of \frac{259}{9}.
x=\frac{\frac{5}{3}±\frac{\sqrt{259}}{3}}{2\times \frac{3}{2}}
The opposite of -\frac{5}{3} is \frac{5}{3}.
x=\frac{\frac{5}{3}±\frac{\sqrt{259}}{3}}{3}
Multiply 2 times \frac{3}{2}.
x=\frac{\sqrt{259}+5}{3\times 3}
Now solve the equation x=\frac{\frac{5}{3}±\frac{\sqrt{259}}{3}}{3} when ± is plus. Add \frac{5}{3} to \frac{\sqrt{259}}{3}.
x=\frac{\sqrt{259}+5}{9}
Divide \frac{5+\sqrt{259}}{3} by 3.
x=\frac{5-\sqrt{259}}{3\times 3}
Now solve the equation x=\frac{\frac{5}{3}±\frac{\sqrt{259}}{3}}{3} when ± is minus. Subtract \frac{\sqrt{259}}{3} from \frac{5}{3}.
x=\frac{5-\sqrt{259}}{9}
Divide \frac{5-\sqrt{259}}{3} by 3.
x=\frac{\sqrt{259}+5}{9} x=\frac{5-\sqrt{259}}{9}
The equation is now solved.
\frac{3}{2}x^{2}-\frac{5}{3}x-4=\frac{1}{3}
Swap sides so that all variable terms are on the left hand side.
\frac{3}{2}x^{2}-\frac{5}{3}x=\frac{1}{3}+4
Add 4 to both sides.
\frac{3}{2}x^{2}-\frac{5}{3}x=\frac{13}{3}
Add \frac{1}{3} and 4 to get \frac{13}{3}.
\frac{\frac{3}{2}x^{2}-\frac{5}{3}x}{\frac{3}{2}}=\frac{\frac{13}{3}}{\frac{3}{2}}
Divide both sides of the equation by \frac{3}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{\frac{5}{3}}{\frac{3}{2}}\right)x=\frac{\frac{13}{3}}{\frac{3}{2}}
Dividing by \frac{3}{2} undoes the multiplication by \frac{3}{2}.
x^{2}-\frac{10}{9}x=\frac{\frac{13}{3}}{\frac{3}{2}}
Divide -\frac{5}{3} by \frac{3}{2} by multiplying -\frac{5}{3} by the reciprocal of \frac{3}{2}.
x^{2}-\frac{10}{9}x=\frac{26}{9}
Divide \frac{13}{3} by \frac{3}{2} by multiplying \frac{13}{3} by the reciprocal of \frac{3}{2}.
x^{2}-\frac{10}{9}x+\left(-\frac{5}{9}\right)^{2}=\frac{26}{9}+\left(-\frac{5}{9}\right)^{2}
Divide -\frac{10}{9}, the coefficient of the x term, by 2 to get -\frac{5}{9}. Then add the square of -\frac{5}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{10}{9}x+\frac{25}{81}=\frac{26}{9}+\frac{25}{81}
Square -\frac{5}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{10}{9}x+\frac{25}{81}=\frac{259}{81}
Add \frac{26}{9} to \frac{25}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{9}\right)^{2}=\frac{259}{81}
Factor x^{2}-\frac{10}{9}x+\frac{25}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{9}\right)^{2}}=\sqrt{\frac{259}{81}}
Take the square root of both sides of the equation.
x-\frac{5}{9}=\frac{\sqrt{259}}{9} x-\frac{5}{9}=-\frac{\sqrt{259}}{9}
Simplify.
x=\frac{\sqrt{259}+5}{9} x=\frac{5-\sqrt{259}}{9}
Add \frac{5}{9} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}