Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{3}x^{2}+x-76=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1^{2}-4\times \frac{1}{3}\left(-76\right)}}{2\times \frac{1}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{3} for a, 1 for b, and -76 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times \frac{1}{3}\left(-76\right)}}{2\times \frac{1}{3}}
Square 1.
x=\frac{-1±\sqrt{1-\frac{4}{3}\left(-76\right)}}{2\times \frac{1}{3}}
Multiply -4 times \frac{1}{3}.
x=\frac{-1±\sqrt{1+\frac{304}{3}}}{2\times \frac{1}{3}}
Multiply -\frac{4}{3} times -76.
x=\frac{-1±\sqrt{\frac{307}{3}}}{2\times \frac{1}{3}}
Add 1 to \frac{304}{3}.
x=\frac{-1±\frac{\sqrt{921}}{3}}{2\times \frac{1}{3}}
Take the square root of \frac{307}{3}.
x=\frac{-1±\frac{\sqrt{921}}{3}}{\frac{2}{3}}
Multiply 2 times \frac{1}{3}.
x=\frac{\frac{\sqrt{921}}{3}-1}{\frac{2}{3}}
Now solve the equation x=\frac{-1±\frac{\sqrt{921}}{3}}{\frac{2}{3}} when ± is plus. Add -1 to \frac{\sqrt{921}}{3}.
x=\frac{\sqrt{921}-3}{2}
Divide -1+\frac{\sqrt{921}}{3} by \frac{2}{3} by multiplying -1+\frac{\sqrt{921}}{3} by the reciprocal of \frac{2}{3}.
x=\frac{-\frac{\sqrt{921}}{3}-1}{\frac{2}{3}}
Now solve the equation x=\frac{-1±\frac{\sqrt{921}}{3}}{\frac{2}{3}} when ± is minus. Subtract \frac{\sqrt{921}}{3} from -1.
x=\frac{-\sqrt{921}-3}{2}
Divide -1-\frac{\sqrt{921}}{3} by \frac{2}{3} by multiplying -1-\frac{\sqrt{921}}{3} by the reciprocal of \frac{2}{3}.
x=\frac{\sqrt{921}-3}{2} x=\frac{-\sqrt{921}-3}{2}
The equation is now solved.
\frac{1}{3}x^{2}+x-76=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{1}{3}x^{2}+x-76-\left(-76\right)=-\left(-76\right)
Add 76 to both sides of the equation.
\frac{1}{3}x^{2}+x=-\left(-76\right)
Subtracting -76 from itself leaves 0.
\frac{1}{3}x^{2}+x=76
Subtract -76 from 0.
\frac{\frac{1}{3}x^{2}+x}{\frac{1}{3}}=\frac{76}{\frac{1}{3}}
Multiply both sides by 3.
x^{2}+\frac{1}{\frac{1}{3}}x=\frac{76}{\frac{1}{3}}
Dividing by \frac{1}{3} undoes the multiplication by \frac{1}{3}.
x^{2}+3x=\frac{76}{\frac{1}{3}}
Divide 1 by \frac{1}{3} by multiplying 1 by the reciprocal of \frac{1}{3}.
x^{2}+3x=228
Divide 76 by \frac{1}{3} by multiplying 76 by the reciprocal of \frac{1}{3}.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=228+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=228+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=\frac{921}{4}
Add 228 to \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{921}{4}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{921}{4}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{\sqrt{921}}{2} x+\frac{3}{2}=-\frac{\sqrt{921}}{2}
Simplify.
x=\frac{\sqrt{921}-3}{2} x=\frac{-\sqrt{921}-3}{2}
Subtract \frac{3}{2} from both sides of the equation.