Evaluate
\frac{20}{9}\approx 2.222222222
Factor
\frac{5 \cdot 2 ^ {2}}{3 ^ {2}} = 2\frac{2}{9} = 2.2222222222222223
Share
Copied to clipboard
\frac{10}{27}+\frac{1}{2.7}+\frac{1}{2.7}+\frac{1}{2.7}+\frac{1}{2.7}+\frac{1}{2.7}
Expand \frac{1}{2.7} by multiplying both numerator and the denominator by 10.
\frac{10}{27}+\frac{10}{27}+\frac{1}{2.7}+\frac{1}{2.7}+\frac{1}{2.7}+\frac{1}{2.7}
Expand \frac{1}{2.7} by multiplying both numerator and the denominator by 10.
\frac{10+10}{27}+\frac{1}{2.7}+\frac{1}{2.7}+\frac{1}{2.7}+\frac{1}{2.7}
Since \frac{10}{27} and \frac{10}{27} have the same denominator, add them by adding their numerators.
\frac{20}{27}+\frac{1}{2.7}+\frac{1}{2.7}+\frac{1}{2.7}+\frac{1}{2.7}
Add 10 and 10 to get 20.
\frac{20}{27}+\frac{10}{27}+\frac{1}{2.7}+\frac{1}{2.7}+\frac{1}{2.7}
Expand \frac{1}{2.7} by multiplying both numerator and the denominator by 10.
\frac{20+10}{27}+\frac{1}{2.7}+\frac{1}{2.7}+\frac{1}{2.7}
Since \frac{20}{27} and \frac{10}{27} have the same denominator, add them by adding their numerators.
\frac{30}{27}+\frac{1}{2.7}+\frac{1}{2.7}+\frac{1}{2.7}
Add 20 and 10 to get 30.
\frac{10}{9}+\frac{1}{2.7}+\frac{1}{2.7}+\frac{1}{2.7}
Reduce the fraction \frac{30}{27} to lowest terms by extracting and canceling out 3.
\frac{10}{9}+\frac{10}{27}+\frac{1}{2.7}+\frac{1}{2.7}
Expand \frac{1}{2.7} by multiplying both numerator and the denominator by 10.
\frac{30}{27}+\frac{10}{27}+\frac{1}{2.7}+\frac{1}{2.7}
Least common multiple of 9 and 27 is 27. Convert \frac{10}{9} and \frac{10}{27} to fractions with denominator 27.
\frac{30+10}{27}+\frac{1}{2.7}+\frac{1}{2.7}
Since \frac{30}{27} and \frac{10}{27} have the same denominator, add them by adding their numerators.
\frac{40}{27}+\frac{1}{2.7}+\frac{1}{2.7}
Add 30 and 10 to get 40.
\frac{40}{27}+\frac{10}{27}+\frac{1}{2.7}
Expand \frac{1}{2.7} by multiplying both numerator and the denominator by 10.
\frac{40+10}{27}+\frac{1}{2.7}
Since \frac{40}{27} and \frac{10}{27} have the same denominator, add them by adding their numerators.
\frac{50}{27}+\frac{1}{2.7}
Add 40 and 10 to get 50.
\frac{50}{27}+\frac{10}{27}
Expand \frac{1}{2.7} by multiplying both numerator and the denominator by 10.
\frac{50+10}{27}
Since \frac{50}{27} and \frac{10}{27} have the same denominator, add them by adding their numerators.
\frac{60}{27}
Add 50 and 10 to get 60.
\frac{20}{9}
Reduce the fraction \frac{60}{27} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}