Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-6-3x+3\left(x-2\right)\left(x+2\right)\left(-1\right)=3x+6-\left(5-x\right)
Variable x cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by 3\left(x-2\right)\left(x+2\right), the least common multiple of 2-x,x-2,3x^{2}-12.
-6-3x-3\left(x-2\right)\left(x+2\right)=3x+6-\left(5-x\right)
Multiply 3 and -1 to get -3.
-6-3x+\left(-3x+6\right)\left(x+2\right)=3x+6-\left(5-x\right)
Use the distributive property to multiply -3 by x-2.
-6-3x-3x^{2}+12=3x+6-\left(5-x\right)
Use the distributive property to multiply -3x+6 by x+2 and combine like terms.
6-3x-3x^{2}=3x+6-\left(5-x\right)
Add -6 and 12 to get 6.
6-3x-3x^{2}=3x+6-5+x
To find the opposite of 5-x, find the opposite of each term.
6-3x-3x^{2}=3x+1+x
Subtract 5 from 6 to get 1.
6-3x-3x^{2}=4x+1
Combine 3x and x to get 4x.
6-3x-3x^{2}-4x=1
Subtract 4x from both sides.
6-7x-3x^{2}=1
Combine -3x and -4x to get -7x.
6-7x-3x^{2}-1=0
Subtract 1 from both sides.
5-7x-3x^{2}=0
Subtract 1 from 6 to get 5.
-3x^{2}-7x+5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-3\right)\times 5}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -7 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\left(-3\right)\times 5}}{2\left(-3\right)}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49+12\times 5}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-7\right)±\sqrt{49+60}}{2\left(-3\right)}
Multiply 12 times 5.
x=\frac{-\left(-7\right)±\sqrt{109}}{2\left(-3\right)}
Add 49 to 60.
x=\frac{7±\sqrt{109}}{2\left(-3\right)}
The opposite of -7 is 7.
x=\frac{7±\sqrt{109}}{-6}
Multiply 2 times -3.
x=\frac{\sqrt{109}+7}{-6}
Now solve the equation x=\frac{7±\sqrt{109}}{-6} when ± is plus. Add 7 to \sqrt{109}.
x=\frac{-\sqrt{109}-7}{6}
Divide 7+\sqrt{109} by -6.
x=\frac{7-\sqrt{109}}{-6}
Now solve the equation x=\frac{7±\sqrt{109}}{-6} when ± is minus. Subtract \sqrt{109} from 7.
x=\frac{\sqrt{109}-7}{6}
Divide 7-\sqrt{109} by -6.
x=\frac{-\sqrt{109}-7}{6} x=\frac{\sqrt{109}-7}{6}
The equation is now solved.
-6-3x+3\left(x-2\right)\left(x+2\right)\left(-1\right)=3x+6-\left(5-x\right)
Variable x cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by 3\left(x-2\right)\left(x+2\right), the least common multiple of 2-x,x-2,3x^{2}-12.
-6-3x-3\left(x-2\right)\left(x+2\right)=3x+6-\left(5-x\right)
Multiply 3 and -1 to get -3.
-6-3x+\left(-3x+6\right)\left(x+2\right)=3x+6-\left(5-x\right)
Use the distributive property to multiply -3 by x-2.
-6-3x-3x^{2}+12=3x+6-\left(5-x\right)
Use the distributive property to multiply -3x+6 by x+2 and combine like terms.
6-3x-3x^{2}=3x+6-\left(5-x\right)
Add -6 and 12 to get 6.
6-3x-3x^{2}=3x+6-5+x
To find the opposite of 5-x, find the opposite of each term.
6-3x-3x^{2}=3x+1+x
Subtract 5 from 6 to get 1.
6-3x-3x^{2}=4x+1
Combine 3x and x to get 4x.
6-3x-3x^{2}-4x=1
Subtract 4x from both sides.
6-7x-3x^{2}=1
Combine -3x and -4x to get -7x.
-7x-3x^{2}=1-6
Subtract 6 from both sides.
-7x-3x^{2}=-5
Subtract 6 from 1 to get -5.
-3x^{2}-7x=-5
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}-7x}{-3}=-\frac{5}{-3}
Divide both sides by -3.
x^{2}+\left(-\frac{7}{-3}\right)x=-\frac{5}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}+\frac{7}{3}x=-\frac{5}{-3}
Divide -7 by -3.
x^{2}+\frac{7}{3}x=\frac{5}{3}
Divide -5 by -3.
x^{2}+\frac{7}{3}x+\left(\frac{7}{6}\right)^{2}=\frac{5}{3}+\left(\frac{7}{6}\right)^{2}
Divide \frac{7}{3}, the coefficient of the x term, by 2 to get \frac{7}{6}. Then add the square of \frac{7}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{3}x+\frac{49}{36}=\frac{5}{3}+\frac{49}{36}
Square \frac{7}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{3}x+\frac{49}{36}=\frac{109}{36}
Add \frac{5}{3} to \frac{49}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{7}{6}\right)^{2}=\frac{109}{36}
Factor x^{2}+\frac{7}{3}x+\frac{49}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{6}\right)^{2}}=\sqrt{\frac{109}{36}}
Take the square root of both sides of the equation.
x+\frac{7}{6}=\frac{\sqrt{109}}{6} x+\frac{7}{6}=-\frac{\sqrt{109}}{6}
Simplify.
x=\frac{\sqrt{109}-7}{6} x=\frac{-\sqrt{109}-7}{6}
Subtract \frac{7}{6} from both sides of the equation.