Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{2-\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+\sqrt{27}-\frac{6}{\sqrt{3}}
Rationalize the denominator of \frac{1}{2+\sqrt{3}} by multiplying numerator and denominator by 2-\sqrt{3}.
\frac{2-\sqrt{3}}{2^{2}-\left(\sqrt{3}\right)^{2}}+\sqrt{27}-\frac{6}{\sqrt{3}}
Consider \left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2-\sqrt{3}}{4-3}+\sqrt{27}-\frac{6}{\sqrt{3}}
Square 2. Square \sqrt{3}.
\frac{2-\sqrt{3}}{1}+\sqrt{27}-\frac{6}{\sqrt{3}}
Subtract 3 from 4 to get 1.
2-\sqrt{3}+\sqrt{27}-\frac{6}{\sqrt{3}}
Anything divided by one gives itself.
2-\sqrt{3}+3\sqrt{3}-\frac{6}{\sqrt{3}}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
2+2\sqrt{3}-\frac{6}{\sqrt{3}}
Combine -\sqrt{3} and 3\sqrt{3} to get 2\sqrt{3}.
2+2\sqrt{3}-\frac{6\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{6}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
2+2\sqrt{3}-\frac{6\sqrt{3}}{3}
The square of \sqrt{3} is 3.
2+2\sqrt{3}-2\sqrt{3}
Divide 6\sqrt{3} by 3 to get 2\sqrt{3}.
2
Subtract 2\sqrt{3} from 2\sqrt{3} to get 0.