Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3}{4}x^{2}+\frac{1}{2}x=125
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\frac{3}{4}x^{2}+\frac{1}{2}x-125=125-125
Subtract 125 from both sides of the equation.
\frac{3}{4}x^{2}+\frac{1}{2}x-125=0
Subtracting 125 from itself leaves 0.
x=\frac{-\frac{1}{2}±\sqrt{\left(\frac{1}{2}\right)^{2}-4\times \frac{3}{4}\left(-125\right)}}{2\times \frac{3}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{3}{4} for a, \frac{1}{2} for b, and -125 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-4\times \frac{3}{4}\left(-125\right)}}{2\times \frac{3}{4}}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-3\left(-125\right)}}{2\times \frac{3}{4}}
Multiply -4 times \frac{3}{4}.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}+375}}{2\times \frac{3}{4}}
Multiply -3 times -125.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1501}{4}}}{2\times \frac{3}{4}}
Add \frac{1}{4} to 375.
x=\frac{-\frac{1}{2}±\frac{\sqrt{1501}}{2}}{2\times \frac{3}{4}}
Take the square root of \frac{1501}{4}.
x=\frac{-\frac{1}{2}±\frac{\sqrt{1501}}{2}}{\frac{3}{2}}
Multiply 2 times \frac{3}{4}.
x=\frac{\sqrt{1501}-1}{\frac{3}{2}\times 2}
Now solve the equation x=\frac{-\frac{1}{2}±\frac{\sqrt{1501}}{2}}{\frac{3}{2}} when ± is plus. Add -\frac{1}{2} to \frac{\sqrt{1501}}{2}.
x=\frac{\sqrt{1501}-1}{3}
Divide \frac{-1+\sqrt{1501}}{2} by \frac{3}{2} by multiplying \frac{-1+\sqrt{1501}}{2} by the reciprocal of \frac{3}{2}.
x=\frac{-\sqrt{1501}-1}{\frac{3}{2}\times 2}
Now solve the equation x=\frac{-\frac{1}{2}±\frac{\sqrt{1501}}{2}}{\frac{3}{2}} when ± is minus. Subtract \frac{\sqrt{1501}}{2} from -\frac{1}{2}.
x=\frac{-\sqrt{1501}-1}{3}
Divide \frac{-1-\sqrt{1501}}{2} by \frac{3}{2} by multiplying \frac{-1-\sqrt{1501}}{2} by the reciprocal of \frac{3}{2}.
x=\frac{\sqrt{1501}-1}{3} x=\frac{-\sqrt{1501}-1}{3}
The equation is now solved.
\frac{3}{4}x^{2}+\frac{1}{2}x=125
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{3}{4}x^{2}+\frac{1}{2}x}{\frac{3}{4}}=\frac{125}{\frac{3}{4}}
Divide both sides of the equation by \frac{3}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{\frac{1}{2}}{\frac{3}{4}}x=\frac{125}{\frac{3}{4}}
Dividing by \frac{3}{4} undoes the multiplication by \frac{3}{4}.
x^{2}+\frac{2}{3}x=\frac{125}{\frac{3}{4}}
Divide \frac{1}{2} by \frac{3}{4} by multiplying \frac{1}{2} by the reciprocal of \frac{3}{4}.
x^{2}+\frac{2}{3}x=\frac{500}{3}
Divide 125 by \frac{3}{4} by multiplying 125 by the reciprocal of \frac{3}{4}.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=\frac{500}{3}+\left(\frac{1}{3}\right)^{2}
Divide \frac{2}{3}, the coefficient of the x term, by 2 to get \frac{1}{3}. Then add the square of \frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{500}{3}+\frac{1}{9}
Square \frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{1501}{9}
Add \frac{500}{3} to \frac{1}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{3}\right)^{2}=\frac{1501}{9}
Factor x^{2}+\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{\frac{1501}{9}}
Take the square root of both sides of the equation.
x+\frac{1}{3}=\frac{\sqrt{1501}}{3} x+\frac{1}{3}=-\frac{\sqrt{1501}}{3}
Simplify.
x=\frac{\sqrt{1501}-1}{3} x=\frac{-\sqrt{1501}-1}{3}
Subtract \frac{1}{3} from both sides of the equation.