Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{1}{2}x+\frac{1}{2}\right)\left(x-4\right)
Use the distributive property to multiply \frac{1}{2} by x+1.
\frac{1}{2}xx+\frac{1}{2}x\left(-4\right)+\frac{1}{2}x+\frac{1}{2}\left(-4\right)
Apply the distributive property by multiplying each term of \frac{1}{2}x+\frac{1}{2} by each term of x-4.
\frac{1}{2}x^{2}+\frac{1}{2}x\left(-4\right)+\frac{1}{2}x+\frac{1}{2}\left(-4\right)
Multiply x and x to get x^{2}.
\frac{1}{2}x^{2}+\frac{-4}{2}x+\frac{1}{2}x+\frac{1}{2}\left(-4\right)
Multiply \frac{1}{2} and -4 to get \frac{-4}{2}.
\frac{1}{2}x^{2}-2x+\frac{1}{2}x+\frac{1}{2}\left(-4\right)
Divide -4 by 2 to get -2.
\frac{1}{2}x^{2}-\frac{3}{2}x+\frac{1}{2}\left(-4\right)
Combine -2x and \frac{1}{2}x to get -\frac{3}{2}x.
\frac{1}{2}x^{2}-\frac{3}{2}x+\frac{-4}{2}
Multiply \frac{1}{2} and -4 to get \frac{-4}{2}.
\frac{1}{2}x^{2}-\frac{3}{2}x-2
Divide -4 by 2 to get -2.
\left(\frac{1}{2}x+\frac{1}{2}\right)\left(x-4\right)
Use the distributive property to multiply \frac{1}{2} by x+1.
\frac{1}{2}xx+\frac{1}{2}x\left(-4\right)+\frac{1}{2}x+\frac{1}{2}\left(-4\right)
Apply the distributive property by multiplying each term of \frac{1}{2}x+\frac{1}{2} by each term of x-4.
\frac{1}{2}x^{2}+\frac{1}{2}x\left(-4\right)+\frac{1}{2}x+\frac{1}{2}\left(-4\right)
Multiply x and x to get x^{2}.
\frac{1}{2}x^{2}+\frac{-4}{2}x+\frac{1}{2}x+\frac{1}{2}\left(-4\right)
Multiply \frac{1}{2} and -4 to get \frac{-4}{2}.
\frac{1}{2}x^{2}-2x+\frac{1}{2}x+\frac{1}{2}\left(-4\right)
Divide -4 by 2 to get -2.
\frac{1}{2}x^{2}-\frac{3}{2}x+\frac{1}{2}\left(-4\right)
Combine -2x and \frac{1}{2}x to get -\frac{3}{2}x.
\frac{1}{2}x^{2}-\frac{3}{2}x+\frac{-4}{2}
Multiply \frac{1}{2} and -4 to get \frac{-4}{2}.
\frac{1}{2}x^{2}-\frac{3}{2}x-2
Divide -4 by 2 to get -2.