Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(2-\frac{1}{2}x\right)\left(6-x\right)=1
Use the distributive property to multiply \frac{1}{2} by 4-x.
12-5x+\frac{1}{2}x^{2}=1
Use the distributive property to multiply 2-\frac{1}{2}x by 6-x and combine like terms.
12-5x+\frac{1}{2}x^{2}-1=0
Subtract 1 from both sides.
11-5x+\frac{1}{2}x^{2}=0
Subtract 1 from 12 to get 11.
\frac{1}{2}x^{2}-5x+11=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times \frac{1}{2}\times 11}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, -5 for b, and 11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times \frac{1}{2}\times 11}}{2\times \frac{1}{2}}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25-2\times 11}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-\left(-5\right)±\sqrt{25-22}}{2\times \frac{1}{2}}
Multiply -2 times 11.
x=\frac{-\left(-5\right)±\sqrt{3}}{2\times \frac{1}{2}}
Add 25 to -22.
x=\frac{5±\sqrt{3}}{2\times \frac{1}{2}}
The opposite of -5 is 5.
x=\frac{5±\sqrt{3}}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{\sqrt{3}+5}{1}
Now solve the equation x=\frac{5±\sqrt{3}}{1} when ± is plus. Add 5 to \sqrt{3}.
x=\sqrt{3}+5
Divide 5+\sqrt{3} by 1.
x=\frac{5-\sqrt{3}}{1}
Now solve the equation x=\frac{5±\sqrt{3}}{1} when ± is minus. Subtract \sqrt{3} from 5.
x=5-\sqrt{3}
Divide 5-\sqrt{3} by 1.
x=\sqrt{3}+5 x=5-\sqrt{3}
The equation is now solved.
\left(2-\frac{1}{2}x\right)\left(6-x\right)=1
Use the distributive property to multiply \frac{1}{2} by 4-x.
12-5x+\frac{1}{2}x^{2}=1
Use the distributive property to multiply 2-\frac{1}{2}x by 6-x and combine like terms.
-5x+\frac{1}{2}x^{2}=1-12
Subtract 12 from both sides.
-5x+\frac{1}{2}x^{2}=-11
Subtract 12 from 1 to get -11.
\frac{1}{2}x^{2}-5x=-11
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{1}{2}x^{2}-5x}{\frac{1}{2}}=-\frac{11}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\left(-\frac{5}{\frac{1}{2}}\right)x=-\frac{11}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}-10x=-\frac{11}{\frac{1}{2}}
Divide -5 by \frac{1}{2} by multiplying -5 by the reciprocal of \frac{1}{2}.
x^{2}-10x=-22
Divide -11 by \frac{1}{2} by multiplying -11 by the reciprocal of \frac{1}{2}.
x^{2}-10x+\left(-5\right)^{2}=-22+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=-22+25
Square -5.
x^{2}-10x+25=3
Add -22 to 25.
\left(x-5\right)^{2}=3
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{3}
Take the square root of both sides of the equation.
x-5=\sqrt{3} x-5=-\sqrt{3}
Simplify.
x=\sqrt{3}+5 x=5-\sqrt{3}
Add 5 to both sides of the equation.