Solve for x
x=-\frac{1}{2}=-0.5
Graph
Share
Copied to clipboard
\frac{1}{2}\times 2x+\frac{1}{2}\times 3+\frac{1}{3}\left(2x+4\right)=\frac{1}{4}\left(2x+5\right)+\frac{1}{5}\left(2x+6\right)
Use the distributive property to multiply \frac{1}{2} by 2x+3.
x+\frac{1}{2}\times 3+\frac{1}{3}\left(2x+4\right)=\frac{1}{4}\left(2x+5\right)+\frac{1}{5}\left(2x+6\right)
Cancel out 2 and 2.
x+\frac{3}{2}+\frac{1}{3}\left(2x+4\right)=\frac{1}{4}\left(2x+5\right)+\frac{1}{5}\left(2x+6\right)
Multiply \frac{1}{2} and 3 to get \frac{3}{2}.
x+\frac{3}{2}+\frac{1}{3}\times 2x+\frac{1}{3}\times 4=\frac{1}{4}\left(2x+5\right)+\frac{1}{5}\left(2x+6\right)
Use the distributive property to multiply \frac{1}{3} by 2x+4.
x+\frac{3}{2}+\frac{2}{3}x+\frac{1}{3}\times 4=\frac{1}{4}\left(2x+5\right)+\frac{1}{5}\left(2x+6\right)
Multiply \frac{1}{3} and 2 to get \frac{2}{3}.
x+\frac{3}{2}+\frac{2}{3}x+\frac{4}{3}=\frac{1}{4}\left(2x+5\right)+\frac{1}{5}\left(2x+6\right)
Multiply \frac{1}{3} and 4 to get \frac{4}{3}.
\frac{5}{3}x+\frac{3}{2}+\frac{4}{3}=\frac{1}{4}\left(2x+5\right)+\frac{1}{5}\left(2x+6\right)
Combine x and \frac{2}{3}x to get \frac{5}{3}x.
\frac{5}{3}x+\frac{9}{6}+\frac{8}{6}=\frac{1}{4}\left(2x+5\right)+\frac{1}{5}\left(2x+6\right)
Least common multiple of 2 and 3 is 6. Convert \frac{3}{2} and \frac{4}{3} to fractions with denominator 6.
\frac{5}{3}x+\frac{9+8}{6}=\frac{1}{4}\left(2x+5\right)+\frac{1}{5}\left(2x+6\right)
Since \frac{9}{6} and \frac{8}{6} have the same denominator, add them by adding their numerators.
\frac{5}{3}x+\frac{17}{6}=\frac{1}{4}\left(2x+5\right)+\frac{1}{5}\left(2x+6\right)
Add 9 and 8 to get 17.
\frac{5}{3}x+\frac{17}{6}=\frac{1}{4}\times 2x+\frac{1}{4}\times 5+\frac{1}{5}\left(2x+6\right)
Use the distributive property to multiply \frac{1}{4} by 2x+5.
\frac{5}{3}x+\frac{17}{6}=\frac{2}{4}x+\frac{1}{4}\times 5+\frac{1}{5}\left(2x+6\right)
Multiply \frac{1}{4} and 2 to get \frac{2}{4}.
\frac{5}{3}x+\frac{17}{6}=\frac{1}{2}x+\frac{1}{4}\times 5+\frac{1}{5}\left(2x+6\right)
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{5}{3}x+\frac{17}{6}=\frac{1}{2}x+\frac{5}{4}+\frac{1}{5}\left(2x+6\right)
Multiply \frac{1}{4} and 5 to get \frac{5}{4}.
\frac{5}{3}x+\frac{17}{6}=\frac{1}{2}x+\frac{5}{4}+\frac{1}{5}\times 2x+\frac{1}{5}\times 6
Use the distributive property to multiply \frac{1}{5} by 2x+6.
\frac{5}{3}x+\frac{17}{6}=\frac{1}{2}x+\frac{5}{4}+\frac{2}{5}x+\frac{1}{5}\times 6
Multiply \frac{1}{5} and 2 to get \frac{2}{5}.
\frac{5}{3}x+\frac{17}{6}=\frac{1}{2}x+\frac{5}{4}+\frac{2}{5}x+\frac{6}{5}
Multiply \frac{1}{5} and 6 to get \frac{6}{5}.
\frac{5}{3}x+\frac{17}{6}=\frac{9}{10}x+\frac{5}{4}+\frac{6}{5}
Combine \frac{1}{2}x and \frac{2}{5}x to get \frac{9}{10}x.
\frac{5}{3}x+\frac{17}{6}=\frac{9}{10}x+\frac{25}{20}+\frac{24}{20}
Least common multiple of 4 and 5 is 20. Convert \frac{5}{4} and \frac{6}{5} to fractions with denominator 20.
\frac{5}{3}x+\frac{17}{6}=\frac{9}{10}x+\frac{25+24}{20}
Since \frac{25}{20} and \frac{24}{20} have the same denominator, add them by adding their numerators.
\frac{5}{3}x+\frac{17}{6}=\frac{9}{10}x+\frac{49}{20}
Add 25 and 24 to get 49.
\frac{5}{3}x+\frac{17}{6}-\frac{9}{10}x=\frac{49}{20}
Subtract \frac{9}{10}x from both sides.
\frac{23}{30}x+\frac{17}{6}=\frac{49}{20}
Combine \frac{5}{3}x and -\frac{9}{10}x to get \frac{23}{30}x.
\frac{23}{30}x=\frac{49}{20}-\frac{17}{6}
Subtract \frac{17}{6} from both sides.
\frac{23}{30}x=\frac{147}{60}-\frac{170}{60}
Least common multiple of 20 and 6 is 60. Convert \frac{49}{20} and \frac{17}{6} to fractions with denominator 60.
\frac{23}{30}x=\frac{147-170}{60}
Since \frac{147}{60} and \frac{170}{60} have the same denominator, subtract them by subtracting their numerators.
\frac{23}{30}x=-\frac{23}{60}
Subtract 170 from 147 to get -23.
x=-\frac{23}{60}\times \frac{30}{23}
Multiply both sides by \frac{30}{23}, the reciprocal of \frac{23}{30}.
x=\frac{-23\times 30}{60\times 23}
Multiply -\frac{23}{60} times \frac{30}{23} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-690}{1380}
Do the multiplications in the fraction \frac{-23\times 30}{60\times 23}.
x=-\frac{1}{2}
Reduce the fraction \frac{-690}{1380} to lowest terms by extracting and canceling out 690.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}