Evaluate
-0.625
Factor
-0.625
Share
Copied to clipboard
\frac{1}{2}+\frac{3}{2}\left(-0.125+\frac{0.25}{-\frac{1}{5}-\frac{1}{5}}\right)
Convert decimal number 0.2 to fraction \frac{2}{10}. Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
\frac{1}{2}+\frac{3}{2}\left(-0.125+\frac{0.25}{\frac{-1-1}{5}}\right)
Since -\frac{1}{5} and \frac{1}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}+\frac{3}{2}\left(-0.125+\frac{0.25}{-\frac{2}{5}}\right)
Subtract 1 from -1 to get -2.
\frac{1}{2}+\frac{3}{2}\left(-0.125+0.25\left(-\frac{5}{2}\right)\right)
Divide 0.25 by -\frac{2}{5} by multiplying 0.25 by the reciprocal of -\frac{2}{5}.
\frac{1}{2}+\frac{3}{2}\left(-0.125+\frac{1}{4}\left(-\frac{5}{2}\right)\right)
Convert decimal number 0.25 to fraction \frac{25}{100}. Reduce the fraction \frac{25}{100} to lowest terms by extracting and canceling out 25.
\frac{1}{2}+\frac{3}{2}\left(-0.125+\frac{1\left(-5\right)}{4\times 2}\right)
Multiply \frac{1}{4} times -\frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}+\frac{3}{2}\left(-0.125+\frac{-5}{8}\right)
Do the multiplications in the fraction \frac{1\left(-5\right)}{4\times 2}.
\frac{1}{2}+\frac{3}{2}\left(-0.125-\frac{5}{8}\right)
Fraction \frac{-5}{8} can be rewritten as -\frac{5}{8} by extracting the negative sign.
\frac{1}{2}+\frac{3}{2}\left(-\frac{1}{8}-\frac{5}{8}\right)
Convert decimal number -0.125 to fraction -\frac{125}{1000}. Reduce the fraction -\frac{125}{1000} to lowest terms by extracting and canceling out 125.
\frac{1}{2}+\frac{3}{2}\times \frac{-1-5}{8}
Since -\frac{1}{8} and \frac{5}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}+\frac{3}{2}\times \frac{-6}{8}
Subtract 5 from -1 to get -6.
\frac{1}{2}+\frac{3}{2}\left(-\frac{3}{4}\right)
Reduce the fraction \frac{-6}{8} to lowest terms by extracting and canceling out 2.
\frac{1}{2}+\frac{3\left(-3\right)}{2\times 4}
Multiply \frac{3}{2} times -\frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}+\frac{-9}{8}
Do the multiplications in the fraction \frac{3\left(-3\right)}{2\times 4}.
\frac{1}{2}-\frac{9}{8}
Fraction \frac{-9}{8} can be rewritten as -\frac{9}{8} by extracting the negative sign.
\frac{4}{8}-\frac{9}{8}
Least common multiple of 2 and 8 is 8. Convert \frac{1}{2} and \frac{9}{8} to fractions with denominator 8.
\frac{4-9}{8}
Since \frac{4}{8} and \frac{9}{8} have the same denominator, subtract them by subtracting their numerators.
-\frac{5}{8}
Subtract 9 from 4 to get -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}