Solve for x
x = \frac{7}{2} = 3\frac{1}{2} = 3.5
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Share
Copied to clipboard
\frac{1}{2}\left(2x-5\right)^{2}-2+2=2
Add 2 to both sides of the equation.
\frac{1}{2}\left(2x-5\right)^{2}=2
Subtracting 2 from itself leaves 0.
\frac{\frac{1}{2}\left(2x-5\right)^{2}}{\frac{1}{2}}=\frac{2}{\frac{1}{2}}
Multiply both sides by 2.
\left(2x-5\right)^{2}=\frac{2}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
\left(2x-5\right)^{2}=4
Divide 2 by \frac{1}{2} by multiplying 2 by the reciprocal of \frac{1}{2}.
2x-5=2 2x-5=-2
Take the square root of both sides of the equation.
2x-5-\left(-5\right)=2-\left(-5\right) 2x-5-\left(-5\right)=-2-\left(-5\right)
Add 5 to both sides of the equation.
2x=2-\left(-5\right) 2x=-2-\left(-5\right)
Subtracting -5 from itself leaves 0.
2x=7
Subtract -5 from 2.
2x=3
Subtract -5 from -2.
\frac{2x}{2}=\frac{7}{2} \frac{2x}{2}=\frac{3}{2}
Divide both sides by 2.
x=\frac{7}{2} x=\frac{3}{2}
Dividing by 2 undoes the multiplication by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}