Evaluate
-\frac{15x^{2}}{2}+26x+\frac{179}{2}
Expand
-\frac{15x^{2}}{2}+26x+\frac{179}{2}
Graph
Share
Copied to clipboard
\left(\frac{1}{2}x+\frac{1}{2}\left(-1\right)\right)\left(3x+1\right)-3\left(x-5\right)\left(x+2\right)\times 3
Use the distributive property to multiply \frac{1}{2} by x-1.
\left(\frac{1}{2}x-\frac{1}{2}\right)\left(3x+1\right)-3\left(x-5\right)\left(x+2\right)\times 3
Multiply \frac{1}{2} and -1 to get -\frac{1}{2}.
\frac{1}{2}x\times 3x+\frac{1}{2}x-\frac{1}{2}\times 3x-\frac{1}{2}-3\left(x-5\right)\left(x+2\right)\times 3
Apply the distributive property by multiplying each term of \frac{1}{2}x-\frac{1}{2} by each term of 3x+1.
\frac{1}{2}x^{2}\times 3+\frac{1}{2}x-\frac{1}{2}\times 3x-\frac{1}{2}-3\left(x-5\right)\left(x+2\right)\times 3
Multiply x and x to get x^{2}.
\frac{3}{2}x^{2}+\frac{1}{2}x-\frac{1}{2}\times 3x-\frac{1}{2}-3\left(x-5\right)\left(x+2\right)\times 3
Multiply \frac{1}{2} and 3 to get \frac{3}{2}.
\frac{3}{2}x^{2}+\frac{1}{2}x+\frac{-3}{2}x-\frac{1}{2}-3\left(x-5\right)\left(x+2\right)\times 3
Express -\frac{1}{2}\times 3 as a single fraction.
\frac{3}{2}x^{2}+\frac{1}{2}x-\frac{3}{2}x-\frac{1}{2}-3\left(x-5\right)\left(x+2\right)\times 3
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
\frac{3}{2}x^{2}-x-\frac{1}{2}-3\left(x-5\right)\left(x+2\right)\times 3
Combine \frac{1}{2}x and -\frac{3}{2}x to get -x.
\frac{3}{2}x^{2}-x-\frac{1}{2}-9\left(x-5\right)\left(x+2\right)
Multiply 3 and 3 to get 9.
\frac{3}{2}x^{2}-x-\frac{1}{2}+\left(-9x+45\right)\left(x+2\right)
Use the distributive property to multiply -9 by x-5.
\frac{3}{2}x^{2}-x-\frac{1}{2}-9x^{2}-18x+45x+90
Apply the distributive property by multiplying each term of -9x+45 by each term of x+2.
\frac{3}{2}x^{2}-x-\frac{1}{2}-9x^{2}+27x+90
Combine -18x and 45x to get 27x.
-\frac{15}{2}x^{2}-x-\frac{1}{2}+27x+90
Combine \frac{3}{2}x^{2} and -9x^{2} to get -\frac{15}{2}x^{2}.
-\frac{15}{2}x^{2}+26x-\frac{1}{2}+90
Combine -x and 27x to get 26x.
-\frac{15}{2}x^{2}+26x-\frac{1}{2}+\frac{180}{2}
Convert 90 to fraction \frac{180}{2}.
-\frac{15}{2}x^{2}+26x+\frac{-1+180}{2}
Since -\frac{1}{2} and \frac{180}{2} have the same denominator, add them by adding their numerators.
-\frac{15}{2}x^{2}+26x+\frac{179}{2}
Add -1 and 180 to get 179.
\left(\frac{1}{2}x+\frac{1}{2}\left(-1\right)\right)\left(3x+1\right)-3\left(x-5\right)\left(x+2\right)\times 3
Use the distributive property to multiply \frac{1}{2} by x-1.
\left(\frac{1}{2}x-\frac{1}{2}\right)\left(3x+1\right)-3\left(x-5\right)\left(x+2\right)\times 3
Multiply \frac{1}{2} and -1 to get -\frac{1}{2}.
\frac{1}{2}x\times 3x+\frac{1}{2}x-\frac{1}{2}\times 3x-\frac{1}{2}-3\left(x-5\right)\left(x+2\right)\times 3
Apply the distributive property by multiplying each term of \frac{1}{2}x-\frac{1}{2} by each term of 3x+1.
\frac{1}{2}x^{2}\times 3+\frac{1}{2}x-\frac{1}{2}\times 3x-\frac{1}{2}-3\left(x-5\right)\left(x+2\right)\times 3
Multiply x and x to get x^{2}.
\frac{3}{2}x^{2}+\frac{1}{2}x-\frac{1}{2}\times 3x-\frac{1}{2}-3\left(x-5\right)\left(x+2\right)\times 3
Multiply \frac{1}{2} and 3 to get \frac{3}{2}.
\frac{3}{2}x^{2}+\frac{1}{2}x+\frac{-3}{2}x-\frac{1}{2}-3\left(x-5\right)\left(x+2\right)\times 3
Express -\frac{1}{2}\times 3 as a single fraction.
\frac{3}{2}x^{2}+\frac{1}{2}x-\frac{3}{2}x-\frac{1}{2}-3\left(x-5\right)\left(x+2\right)\times 3
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
\frac{3}{2}x^{2}-x-\frac{1}{2}-3\left(x-5\right)\left(x+2\right)\times 3
Combine \frac{1}{2}x and -\frac{3}{2}x to get -x.
\frac{3}{2}x^{2}-x-\frac{1}{2}-9\left(x-5\right)\left(x+2\right)
Multiply 3 and 3 to get 9.
\frac{3}{2}x^{2}-x-\frac{1}{2}+\left(-9x+45\right)\left(x+2\right)
Use the distributive property to multiply -9 by x-5.
\frac{3}{2}x^{2}-x-\frac{1}{2}-9x^{2}-18x+45x+90
Apply the distributive property by multiplying each term of -9x+45 by each term of x+2.
\frac{3}{2}x^{2}-x-\frac{1}{2}-9x^{2}+27x+90
Combine -18x and 45x to get 27x.
-\frac{15}{2}x^{2}-x-\frac{1}{2}+27x+90
Combine \frac{3}{2}x^{2} and -9x^{2} to get -\frac{15}{2}x^{2}.
-\frac{15}{2}x^{2}+26x-\frac{1}{2}+90
Combine -x and 27x to get 26x.
-\frac{15}{2}x^{2}+26x-\frac{1}{2}+\frac{180}{2}
Convert 90 to fraction \frac{180}{2}.
-\frac{15}{2}x^{2}+26x+\frac{-1+180}{2}
Since -\frac{1}{2} and \frac{180}{2} have the same denominator, add them by adding their numerators.
-\frac{15}{2}x^{2}+26x+\frac{179}{2}
Add -1 and 180 to get 179.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}