Skip to main content
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{2}m+\frac{1}{2}\left(-1\right)+5=\frac{1}{3}\left(2m+1\right)
Use the distributive property to multiply \frac{1}{2} by m-1.
\frac{1}{2}m-\frac{1}{2}+5=\frac{1}{3}\left(2m+1\right)
Multiply \frac{1}{2} and -1 to get -\frac{1}{2}.
\frac{1}{2}m-\frac{1}{2}+\frac{10}{2}=\frac{1}{3}\left(2m+1\right)
Convert 5 to fraction \frac{10}{2}.
\frac{1}{2}m+\frac{-1+10}{2}=\frac{1}{3}\left(2m+1\right)
Since -\frac{1}{2} and \frac{10}{2} have the same denominator, add them by adding their numerators.
\frac{1}{2}m+\frac{9}{2}=\frac{1}{3}\left(2m+1\right)
Add -1 and 10 to get 9.
\frac{1}{2}m+\frac{9}{2}=\frac{1}{3}\times 2m+\frac{1}{3}
Use the distributive property to multiply \frac{1}{3} by 2m+1.
\frac{1}{2}m+\frac{9}{2}=\frac{2}{3}m+\frac{1}{3}
Multiply \frac{1}{3} and 2 to get \frac{2}{3}.
\frac{1}{2}m+\frac{9}{2}-\frac{2}{3}m=\frac{1}{3}
Subtract \frac{2}{3}m from both sides.
-\frac{1}{6}m+\frac{9}{2}=\frac{1}{3}
Combine \frac{1}{2}m and -\frac{2}{3}m to get -\frac{1}{6}m.
-\frac{1}{6}m=\frac{1}{3}-\frac{9}{2}
Subtract \frac{9}{2} from both sides.
-\frac{1}{6}m=\frac{2}{6}-\frac{27}{6}
Least common multiple of 3 and 2 is 6. Convert \frac{1}{3} and \frac{9}{2} to fractions with denominator 6.
-\frac{1}{6}m=\frac{2-27}{6}
Since \frac{2}{6} and \frac{27}{6} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{6}m=-\frac{25}{6}
Subtract 27 from 2 to get -25.
m=-\frac{25}{6}\left(-6\right)
Multiply both sides by -6, the reciprocal of -\frac{1}{6}.
m=\frac{-25\left(-6\right)}{6}
Express -\frac{25}{6}\left(-6\right) as a single fraction.
m=\frac{150}{6}
Multiply -25 and -6 to get 150.
m=25
Divide 150 by 6 to get 25.