Solve for m
m=25
Share
Copied to clipboard
\frac{1}{2}m+\frac{1}{2}\left(-1\right)+5=\frac{1}{3}\left(2m+1\right)
Use the distributive property to multiply \frac{1}{2} by m-1.
\frac{1}{2}m-\frac{1}{2}+5=\frac{1}{3}\left(2m+1\right)
Multiply \frac{1}{2} and -1 to get -\frac{1}{2}.
\frac{1}{2}m-\frac{1}{2}+\frac{10}{2}=\frac{1}{3}\left(2m+1\right)
Convert 5 to fraction \frac{10}{2}.
\frac{1}{2}m+\frac{-1+10}{2}=\frac{1}{3}\left(2m+1\right)
Since -\frac{1}{2} and \frac{10}{2} have the same denominator, add them by adding their numerators.
\frac{1}{2}m+\frac{9}{2}=\frac{1}{3}\left(2m+1\right)
Add -1 and 10 to get 9.
\frac{1}{2}m+\frac{9}{2}=\frac{1}{3}\times 2m+\frac{1}{3}
Use the distributive property to multiply \frac{1}{3} by 2m+1.
\frac{1}{2}m+\frac{9}{2}=\frac{2}{3}m+\frac{1}{3}
Multiply \frac{1}{3} and 2 to get \frac{2}{3}.
\frac{1}{2}m+\frac{9}{2}-\frac{2}{3}m=\frac{1}{3}
Subtract \frac{2}{3}m from both sides.
-\frac{1}{6}m+\frac{9}{2}=\frac{1}{3}
Combine \frac{1}{2}m and -\frac{2}{3}m to get -\frac{1}{6}m.
-\frac{1}{6}m=\frac{1}{3}-\frac{9}{2}
Subtract \frac{9}{2} from both sides.
-\frac{1}{6}m=\frac{2}{6}-\frac{27}{6}
Least common multiple of 3 and 2 is 6. Convert \frac{1}{3} and \frac{9}{2} to fractions with denominator 6.
-\frac{1}{6}m=\frac{2-27}{6}
Since \frac{2}{6} and \frac{27}{6} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{6}m=-\frac{25}{6}
Subtract 27 from 2 to get -25.
m=-\frac{25}{6}\left(-6\right)
Multiply both sides by -6, the reciprocal of -\frac{1}{6}.
m=\frac{-25\left(-6\right)}{6}
Express -\frac{25}{6}\left(-6\right) as a single fraction.
m=\frac{150}{6}
Multiply -25 and -6 to get 150.
m=25
Divide 150 by 6 to get 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}