Evaluate
\frac{\sqrt{3}\left(t^{2}-6t+36\right)}{2}
Factor
\frac{\sqrt{3}\left(t^{2}-6t+36\right)}{2}
Share
Copied to clipboard
\left(\frac{1}{2}\times 6+\frac{1}{2}\left(-1\right)t\right)\left(6\sqrt{3}-\sqrt{3}t\right)+\frac{6}{2}\left(6\sqrt{3}-6\sqrt{3}+\sqrt{3}t\right)
Use the distributive property to multiply \frac{1}{2} by 6-t.
\left(\frac{6}{2}+\frac{1}{2}\left(-1\right)t\right)\left(6\sqrt{3}-\sqrt{3}t\right)+\frac{6}{2}\left(6\sqrt{3}-6\sqrt{3}+\sqrt{3}t\right)
Multiply \frac{1}{2} and 6 to get \frac{6}{2}.
\left(3+\frac{1}{2}\left(-1\right)t\right)\left(6\sqrt{3}-\sqrt{3}t\right)+\frac{6}{2}\left(6\sqrt{3}-6\sqrt{3}+\sqrt{3}t\right)
Divide 6 by 2 to get 3.
\left(3-\frac{1}{2}t\right)\left(6\sqrt{3}-\sqrt{3}t\right)+\frac{6}{2}\left(6\sqrt{3}-6\sqrt{3}+\sqrt{3}t\right)
Multiply \frac{1}{2} and -1 to get -\frac{1}{2}.
3\left(6\sqrt{3}-\sqrt{3}t\right)-\frac{1}{2}t\left(6\sqrt{3}-\sqrt{3}t\right)+\frac{6}{2}\left(6\sqrt{3}-6\sqrt{3}+\sqrt{3}t\right)
Use the distributive property to multiply 3-\frac{1}{2}t by 6\sqrt{3}-\sqrt{3}t.
3\left(6\sqrt{3}-\sqrt{3}t\right)-\frac{1}{2}t\left(6\sqrt{3}-\sqrt{3}t\right)+3\left(6\sqrt{3}-6\sqrt{3}+\sqrt{3}t\right)
Divide 6 by 2 to get 3.
3\left(6\sqrt{3}-\sqrt{3}t\right)-\frac{1}{2}t\left(6\sqrt{3}-\sqrt{3}t\right)+3\sqrt{3}t
Combine 6\sqrt{3} and -6\sqrt{3} to get 0.
18\sqrt{3}-3\sqrt{3}t-\frac{1}{2}t\left(6\sqrt{3}-\sqrt{3}t\right)+3\sqrt{3}t
Use the distributive property to multiply 3 by 6\sqrt{3}-\sqrt{3}t.
18\sqrt{3}-3\sqrt{3}t-\frac{1}{2}t\times 6\sqrt{3}-\frac{1}{2}t\left(-1\right)\sqrt{3}t+3\sqrt{3}t
Use the distributive property to multiply -\frac{1}{2}t by 6\sqrt{3}-\sqrt{3}t.
18\sqrt{3}-3\sqrt{3}t-\frac{1}{2}t\times 6\sqrt{3}-\frac{1}{2}t^{2}\left(-1\right)\sqrt{3}+3\sqrt{3}t
Multiply t and t to get t^{2}.
18\sqrt{3}-3\sqrt{3}t+\frac{-6}{2}t\sqrt{3}-\frac{1}{2}t^{2}\left(-1\right)\sqrt{3}+3\sqrt{3}t
Express -\frac{1}{2}\times 6 as a single fraction.
18\sqrt{3}-3\sqrt{3}t-3t\sqrt{3}-\frac{1}{2}t^{2}\left(-1\right)\sqrt{3}+3\sqrt{3}t
Divide -6 by 2 to get -3.
18\sqrt{3}-3\sqrt{3}t-3t\sqrt{3}+\frac{1}{2}t^{2}\sqrt{3}+3\sqrt{3}t
Multiply -\frac{1}{2} and -1 to get \frac{1}{2}.
18\sqrt{3}-6\sqrt{3}t+\frac{1}{2}t^{2}\sqrt{3}+3\sqrt{3}t
Combine -3\sqrt{3}t and -3t\sqrt{3} to get -6\sqrt{3}t.
18\sqrt{3}-3\sqrt{3}t+\frac{1}{2}t^{2}\sqrt{3}
Combine -6\sqrt{3}t and 3\sqrt{3}t to get -3\sqrt{3}t.
\frac{\left(6-t\right)\left(6\sqrt{3}-\sqrt{3}t\right)+6\left(6\sqrt{3}-6\sqrt{3}+\sqrt{3}t\right)}{2}
Factor out \frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}