Evaluate
\frac{120}{851}\approx 0.141010576
Factor
\frac{3 \cdot 5 \cdot 2 ^ {3}}{23 \cdot 37} = 0.1410105757931845
Share
Copied to clipboard
\frac{10}{185}+\frac{1}{11.5}
Expand \frac{1}{18.5} by multiplying both numerator and the denominator by 10.
\frac{2}{37}+\frac{1}{11.5}
Reduce the fraction \frac{10}{185} to lowest terms by extracting and canceling out 5.
\frac{2}{37}+\frac{10}{115}
Expand \frac{1}{11.5} by multiplying both numerator and the denominator by 10.
\frac{2}{37}+\frac{2}{23}
Reduce the fraction \frac{10}{115} to lowest terms by extracting and canceling out 5.
\frac{46}{851}+\frac{74}{851}
Least common multiple of 37 and 23 is 851. Convert \frac{2}{37} and \frac{2}{23} to fractions with denominator 851.
\frac{46+74}{851}
Since \frac{46}{851} and \frac{74}{851} have the same denominator, add them by adding their numerators.
\frac{120}{851}
Add 46 and 74 to get 120.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}