\frac{ 1 }{ 1.1 } + \frac{ 2 }{ 1.1 } + \frac{ 2 }{ 1. { 1 }^{ 3 } } + \frac{ 2 }{ 1.1 } + \frac{ 2 }{ 1.1 } + \frac{ 0.5 }{ 1.1 } -4
Evaluate
\frac{53}{11}\approx 4.818181818
Factor
\frac{53}{11} = 4\frac{9}{11} = 4.818181818181818
Share
Copied to clipboard
\frac{1}{1.1}+\frac{2}{1.1}+\frac{2}{1^{4}}+\frac{2}{1.1}+\frac{2}{1.1}+\frac{0.5}{1.1}-4
To multiply powers of the same base, add their exponents. Add 1 and 3 to get 4.
\frac{10}{11}+\frac{2}{1.1}+\frac{2}{1^{4}}+\frac{2}{1.1}+\frac{2}{1.1}+\frac{0.5}{1.1}-4
Expand \frac{1}{1.1} by multiplying both numerator and the denominator by 10.
\frac{10}{11}+\frac{20}{11}+\frac{2}{1^{4}}+\frac{2}{1.1}+\frac{2}{1.1}+\frac{0.5}{1.1}-4
Expand \frac{2}{1.1} by multiplying both numerator and the denominator by 10.
\frac{10+20}{11}+\frac{2}{1^{4}}+\frac{2}{1.1}+\frac{2}{1.1}+\frac{0.5}{1.1}-4
Since \frac{10}{11} and \frac{20}{11} have the same denominator, add them by adding their numerators.
\frac{30}{11}+\frac{2}{1^{4}}+\frac{2}{1.1}+\frac{2}{1.1}+\frac{0.5}{1.1}-4
Add 10 and 20 to get 30.
\frac{30}{11}+\frac{2}{1}+\frac{2}{1.1}+\frac{2}{1.1}+\frac{0.5}{1.1}-4
Calculate 1 to the power of 4 and get 1.
\frac{30}{11}+2+\frac{2}{1.1}+\frac{2}{1.1}+\frac{0.5}{1.1}-4
Anything divided by one gives itself.
\frac{30}{11}+\frac{22}{11}+\frac{2}{1.1}+\frac{2}{1.1}+\frac{0.5}{1.1}-4
Convert 2 to fraction \frac{22}{11}.
\frac{30+22}{11}+\frac{2}{1.1}+\frac{2}{1.1}+\frac{0.5}{1.1}-4
Since \frac{30}{11} and \frac{22}{11} have the same denominator, add them by adding their numerators.
\frac{52}{11}+\frac{2}{1.1}+\frac{2}{1.1}+\frac{0.5}{1.1}-4
Add 30 and 22 to get 52.
\frac{52}{11}+\frac{20}{11}+\frac{2}{1.1}+\frac{0.5}{1.1}-4
Expand \frac{2}{1.1} by multiplying both numerator and the denominator by 10.
\frac{52+20}{11}+\frac{2}{1.1}+\frac{0.5}{1.1}-4
Since \frac{52}{11} and \frac{20}{11} have the same denominator, add them by adding their numerators.
\frac{72}{11}+\frac{2}{1.1}+\frac{0.5}{1.1}-4
Add 52 and 20 to get 72.
\frac{72}{11}+\frac{20}{11}+\frac{0.5}{1.1}-4
Expand \frac{2}{1.1} by multiplying both numerator and the denominator by 10.
\frac{72+20}{11}+\frac{0.5}{1.1}-4
Since \frac{72}{11} and \frac{20}{11} have the same denominator, add them by adding their numerators.
\frac{92}{11}+\frac{0.5}{1.1}-4
Add 72 and 20 to get 92.
\frac{92}{11}+\frac{5}{11}-4
Expand \frac{0.5}{1.1} by multiplying both numerator and the denominator by 10.
\frac{92+5}{11}-4
Since \frac{92}{11} and \frac{5}{11} have the same denominator, add them by adding their numerators.
\frac{97}{11}-4
Add 92 and 5 to get 97.
\frac{97}{11}-\frac{44}{11}
Convert 4 to fraction \frac{44}{11}.
\frac{97-44}{11}
Since \frac{97}{11} and \frac{44}{11} have the same denominator, subtract them by subtracting their numerators.
\frac{53}{11}
Subtract 44 from 97 to get 53.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}