Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{1+2\sqrt{3}}{\left(1-2\sqrt{3}\right)\left(1+2\sqrt{3}\right)}
Rationalize the denominator of \frac{1}{1-2\sqrt{3}} by multiplying numerator and denominator by 1+2\sqrt{3}.
\frac{1+2\sqrt{3}}{1^{2}-\left(-2\sqrt{3}\right)^{2}}
Consider \left(1-2\sqrt{3}\right)\left(1+2\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1+2\sqrt{3}}{1-\left(-2\sqrt{3}\right)^{2}}
Calculate 1 to the power of 2 and get 1.
\frac{1+2\sqrt{3}}{1-\left(-2\right)^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(-2\sqrt{3}\right)^{2}.
\frac{1+2\sqrt{3}}{1-4\left(\sqrt{3}\right)^{2}}
Calculate -2 to the power of 2 and get 4.
\frac{1+2\sqrt{3}}{1-4\times 3}
The square of \sqrt{3} is 3.
\frac{1+2\sqrt{3}}{1-12}
Multiply 4 and 3 to get 12.
\frac{1+2\sqrt{3}}{-11}
Subtract 12 from 1 to get -11.
\frac{-1-2\sqrt{3}}{11}
Multiply both numerator and denominator by -1.