\frac{ 1 }{ { R }_{ 2 } } + \frac{ 1 }{ { R }_{ 3 } } = \frac{ 1 }{ 5 } + \frac{ 1 }{ 1 }
Solve for R_2
R_{2}=-\frac{5R_{3}}{5-6R_{3}}
R_{3}\neq 0\text{ and }R_{3}\neq \frac{5}{6}
Solve for R_3
R_{3}=-\frac{5R_{2}}{5-6R_{2}}
R_{2}\neq 0\text{ and }R_{2}\neq \frac{5}{6}
Share
Copied to clipboard
5R_{3}+5R_{2}=5R_{2}R_{3}\times \frac{1}{5}+5R_{2}R_{3}
Variable R_{2} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 5R_{2}R_{3}, the least common multiple of R_{2},R_{3},5.
5R_{3}+5R_{2}=R_{2}R_{3}+5R_{2}R_{3}
Multiply 5 and \frac{1}{5} to get 1.
5R_{3}+5R_{2}=6R_{2}R_{3}
Combine R_{2}R_{3} and 5R_{2}R_{3} to get 6R_{2}R_{3}.
5R_{3}+5R_{2}-6R_{2}R_{3}=0
Subtract 6R_{2}R_{3} from both sides.
5R_{2}-6R_{2}R_{3}=-5R_{3}
Subtract 5R_{3} from both sides. Anything subtracted from zero gives its negation.
\left(5-6R_{3}\right)R_{2}=-5R_{3}
Combine all terms containing R_{2}.
\frac{\left(5-6R_{3}\right)R_{2}}{5-6R_{3}}=-\frac{5R_{3}}{5-6R_{3}}
Divide both sides by 5-6R_{3}.
R_{2}=-\frac{5R_{3}}{5-6R_{3}}
Dividing by 5-6R_{3} undoes the multiplication by 5-6R_{3}.
R_{2}=-\frac{5R_{3}}{5-6R_{3}}\text{, }R_{2}\neq 0
Variable R_{2} cannot be equal to 0.
5R_{3}+5R_{2}=5R_{2}R_{3}\times \frac{1}{5}+5R_{2}R_{3}
Variable R_{3} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 5R_{2}R_{3}, the least common multiple of R_{2},R_{3},5.
5R_{3}+5R_{2}=R_{2}R_{3}+5R_{2}R_{3}
Multiply 5 and \frac{1}{5} to get 1.
5R_{3}+5R_{2}=6R_{2}R_{3}
Combine R_{2}R_{3} and 5R_{2}R_{3} to get 6R_{2}R_{3}.
5R_{3}+5R_{2}-6R_{2}R_{3}=0
Subtract 6R_{2}R_{3} from both sides.
5R_{3}-6R_{2}R_{3}=-5R_{2}
Subtract 5R_{2} from both sides. Anything subtracted from zero gives its negation.
\left(5-6R_{2}\right)R_{3}=-5R_{2}
Combine all terms containing R_{3}.
\frac{\left(5-6R_{2}\right)R_{3}}{5-6R_{2}}=-\frac{5R_{2}}{5-6R_{2}}
Divide both sides by 5-6R_{2}.
R_{3}=-\frac{5R_{2}}{5-6R_{2}}
Dividing by 5-6R_{2} undoes the multiplication by 5-6R_{2}.
R_{3}=-\frac{5R_{2}}{5-6R_{2}}\text{, }R_{3}\neq 0
Variable R_{3} cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}