Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{\left(x-2\right)^{2}}+\left(x-3\right)\times \frac{2\left(x-2\right)}{\left(x-2\right)^{4}}
Factor the expressions that are not already factored in \frac{2x-4}{\left(x-2\right)^{4}}.
\frac{1}{\left(x-2\right)^{2}}+\left(x-3\right)\times \frac{2}{\left(x-2\right)^{3}}
Cancel out x-2 in both numerator and denominator.
\frac{1}{\left(x-2\right)^{2}}+\frac{\left(x-3\right)\times 2}{\left(x-2\right)^{3}}
Express \left(x-3\right)\times \frac{2}{\left(x-2\right)^{3}} as a single fraction.
\frac{x-2}{\left(x-2\right)^{3}}+\frac{\left(x-3\right)\times 2}{\left(x-2\right)^{3}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)^{2} and \left(x-2\right)^{3} is \left(x-2\right)^{3}. Multiply \frac{1}{\left(x-2\right)^{2}} times \frac{x-2}{x-2}.
\frac{x-2+\left(x-3\right)\times 2}{\left(x-2\right)^{3}}
Since \frac{x-2}{\left(x-2\right)^{3}} and \frac{\left(x-3\right)\times 2}{\left(x-2\right)^{3}} have the same denominator, add them by adding their numerators.
\frac{x-2+2x-6}{\left(x-2\right)^{3}}
Do the multiplications in x-2+\left(x-3\right)\times 2.
\frac{3x-8}{\left(x-2\right)^{3}}
Combine like terms in x-2+2x-6.
\frac{3x-8}{x^{3}-6x^{2}+12x-8}
Expand \left(x-2\right)^{3}.
\frac{1}{\left(x-2\right)^{2}}+\left(x-3\right)\times \frac{2\left(x-2\right)}{\left(x-2\right)^{4}}
Factor the expressions that are not already factored in \frac{2x-4}{\left(x-2\right)^{4}}.
\frac{1}{\left(x-2\right)^{2}}+\left(x-3\right)\times \frac{2}{\left(x-2\right)^{3}}
Cancel out x-2 in both numerator and denominator.
\frac{1}{\left(x-2\right)^{2}}+\frac{\left(x-3\right)\times 2}{\left(x-2\right)^{3}}
Express \left(x-3\right)\times \frac{2}{\left(x-2\right)^{3}} as a single fraction.
\frac{x-2}{\left(x-2\right)^{3}}+\frac{\left(x-3\right)\times 2}{\left(x-2\right)^{3}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)^{2} and \left(x-2\right)^{3} is \left(x-2\right)^{3}. Multiply \frac{1}{\left(x-2\right)^{2}} times \frac{x-2}{x-2}.
\frac{x-2+\left(x-3\right)\times 2}{\left(x-2\right)^{3}}
Since \frac{x-2}{\left(x-2\right)^{3}} and \frac{\left(x-3\right)\times 2}{\left(x-2\right)^{3}} have the same denominator, add them by adding their numerators.
\frac{x-2+2x-6}{\left(x-2\right)^{3}}
Do the multiplications in x-2+\left(x-3\right)\times 2.
\frac{3x-8}{\left(x-2\right)^{3}}
Combine like terms in x-2+2x-6.
\frac{3x-8}{x^{3}-6x^{2}+12x-8}
Expand \left(x-2\right)^{3}.